moondream2 / region.py
vikhyatk's picture
Upload HfMoondream
05d640e verified
raw
history blame
2.82 kB
import torch
import math
from .weights import RegionModel
from .layers import linear, mlp
def fourier_features(x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
"""
Applies Fourier feature mapping to input tensor x using frequency matrix w. This
projects inputs through sinusoidal functions to create higher dimensional features
that help mitigate spectral bias - the tendency of neural networks to learn
low-frequency functions more easily than high-frequency ones. By explicitly
mapping inputs to higher frequencies through sin/cos transformations, we enable
better learning of fine details and higher frequency patterns.
Args:
x: Input tensor to transform
w: Matrix of frequencies for the Fourier features transformation
Returns:
Concatenated cosine and sine transformed features as a tensor
"""
f = 2 * math.pi * x @ w
return torch.cat([f.cos(), f.sin()], dim=-1)
def encode_coordinate(coord: torch.Tensor, w: RegionModel) -> torch.Tensor:
"""
Takes as input a tensor containing a single float coordinate value (x or y)
and encodes it into hidden states for input to the text model.
Args:
coord: Tensor with single float coordinate value
Returns:
Encoded hidden states tensor for input to text model
"""
return linear(fourier_features(coord, w.coord_features), w.coord_encoder)
def decode_coordinate(hidden_state: torch.Tensor, w: RegionModel) -> torch.Tensor:
"""
Takes as input the last hidden state from the text model and outputs a single logit
representing either an x or y coordinate prediction.
Args:
hidden_state: The final hidden state tensor from the text model.
Returns:
A single logit representing the predicted coordinate value (x or y)
"""
return mlp(hidden_state, w.coord_decoder)
def encode_size(size: torch.Tensor, w: RegionModel) -> torch.Tensor:
"""
Takes a tensor containing normalized width and height values in range [0,1]
and encodes them into hidden states for input to the text model.
Args:
size: Tensor with two floats for width and height in range [0,1]
Returns:
Encoded hidden states tensor for input to text model
"""
return linear(fourier_features(size, w.size_features), w.size_encoder)
def decode_size(hidden_state: torch.Tensor, w: RegionModel) -> torch.Tensor:
"""
Takes as input the last hidden state from the text model and outputs two logits
for width and height respectively.
Args:
hidden_state: The final hidden state tensor from the text model.
Returns:
A tensor containing two logits - one for predicted width and one for
predicted height.
"""
return mlp(hidden_state, w.size_decoder).view(2, -1)