File size: 9,709 Bytes
05d640e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import safetensors
import torch
import torch.nn as nn
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Callable, List
from .layers import AttentionWeights, LayerNormWeights, LinearWeights, MLPWeights
@dataclass
class VisionBlock:
ln1: LayerNormWeights
attn: AttentionWeights
ln2: LayerNormWeights
mlp: MLPWeights
@dataclass
class VisionModel:
patch_emb: LinearWeights
pos_emb: torch.Tensor
blocks: List[VisionBlock]
post_ln: LayerNormWeights
proj_mlp: MLPWeights
@dataclass
class TextBlock:
ln: LayerNormWeights
attn: AttentionWeights
mlp: MLPWeights
@dataclass
class TextModel:
wte: torch.Tensor
blocks: List[TextBlock]
post_ln: LayerNormWeights
lm_head: LinearWeights
@dataclass
class RegionModel:
coord_features: torch.Tensor
coord_encoder: LinearWeights
coord_decoder: MLPWeights
size_features: torch.Tensor
size_encoder: LinearWeights
size_decoder: MLPWeights
@dataclass
class MoondreamModel:
vision: VisionModel
text: TextModel
region: RegionModel
@contextmanager
def safetensors_open(safetensors_file: str):
"""
Simplify interfacing with safetensors files. Eliminates the need to ignore
type errors when using the `safe_open` function.
"""
with safetensors.safe_open(
safetensors_file, framework="pt"
) as st: # pyright: ignore
def get_tensor(name: str) -> torch.Tensor:
return st.get_tensor(name)
def get_keys() -> List[str]:
return st.keys()
get_tensor.keys = get_keys
yield get_tensor
def _load_weights(get_tensor: Callable[[str], torch.Tensor], model: nn.Module) -> None:
"""Internal function to load weights using a tensor getter function."""
model = model.to(dtype=torch.float16)
# Vision Model
model.vision["patch_emb"].weight.data.copy_(
get_tensor("vision_encoder.encoder.model.visual.patch_embed.linear.weight")
)
model.vision["patch_emb"].bias.data.copy_(
get_tensor("vision_encoder.encoder.model.visual.patch_embed.linear.bias")
)
model.vision.pos_emb.data.copy_(
get_tensor("vision_encoder.encoder.model.visual.pos_embed")
)
for i in range(len(model.vision["blocks"])):
prefix = f"vision_encoder.encoder.model.visual.blocks.{i}"
# Layer norms
model.vision["blocks"][i]["ln1"].weight.data.copy_(
get_tensor(f"{prefix}.norm1.weight")
)
model.vision["blocks"][i]["ln1"].bias.data.copy_(
get_tensor(f"{prefix}.norm1.bias")
)
model.vision["blocks"][i]["ln2"].weight.data.copy_(
get_tensor(f"{prefix}.norm2.weight")
)
model.vision["blocks"][i]["ln2"].bias.data.copy_(
get_tensor(f"{prefix}.norm2.bias")
)
# Attention
model.vision["blocks"][i]["attn"]["qkv"].weight.data.copy_(
get_tensor(f"{prefix}.attn.qkv.weight")
)
model.vision["blocks"][i]["attn"]["qkv"].bias.data.copy_(
get_tensor(f"{prefix}.attn.qkv.bias")
)
model.vision["blocks"][i]["attn"]["proj"].weight.data.copy_(
get_tensor(f"{prefix}.attn.proj.weight")
)
model.vision["blocks"][i]["attn"]["proj"].bias.data.copy_(
get_tensor(f"{prefix}.attn.proj.bias")
)
# MLP
model.vision["blocks"][i]["mlp"]["fc1"].weight.data.copy_(
get_tensor(f"{prefix}.mlp.fc1.weight")
)
model.vision["blocks"][i]["mlp"]["fc1"].bias.data.copy_(
get_tensor(f"{prefix}.mlp.fc1.bias")
)
model.vision["blocks"][i]["mlp"]["fc2"].weight.data.copy_(
get_tensor(f"{prefix}.mlp.fc2.weight")
)
model.vision["blocks"][i]["mlp"]["fc2"].bias.data.copy_(
get_tensor(f"{prefix}.mlp.fc2.bias")
)
model.vision["post_ln"].weight.data.copy_(
get_tensor("vision_encoder.encoder.model.visual.norm.weight")
)
model.vision["post_ln"].bias.data.copy_(
get_tensor("vision_encoder.encoder.model.visual.norm.bias")
)
model.vision["proj_mlp"]["fc1"].weight.data.copy_(
get_tensor("vision_encoder.projection.mlp.fc1.weight")
)
model.vision["proj_mlp"]["fc1"].bias.data.copy_(
get_tensor("vision_encoder.projection.mlp.fc1.bias")
)
model.vision["proj_mlp"]["fc2"].weight.data.copy_(
get_tensor("vision_encoder.projection.mlp.fc2.weight")
)
model.vision["proj_mlp"]["fc2"].bias.data.copy_(
get_tensor("vision_encoder.projection.mlp.fc2.bias")
)
# Text Model
model.text.wte.data.copy_(get_tensor("text_model.transformer.embd.wte.weight"))
for i in range(len(model.text["blocks"])):
prefix = f"text_model.transformer.h.{i}"
# Layer norm
model.text["blocks"][i]["ln"].weight.data.copy_(
get_tensor(f"{prefix}.ln.weight")
)
model.text["blocks"][i]["ln"].bias.data.copy_(get_tensor(f"{prefix}.ln.bias"))
# Attention
model.text["blocks"][i]["attn"]["qkv"].weight.data.copy_(
get_tensor(f"{prefix}.mixer.Wqkv.weight")
)
model.text["blocks"][i]["attn"]["qkv"].bias.data.copy_(
get_tensor(f"{prefix}.mixer.Wqkv.bias")
)
model.text["blocks"][i]["attn"]["proj"].weight.data.copy_(
get_tensor(f"{prefix}.mixer.out_proj.weight")
)
model.text["blocks"][i]["attn"]["proj"].bias.data.copy_(
get_tensor(f"{prefix}.mixer.out_proj.bias")
)
# MLP
model.text["blocks"][i]["mlp"]["fc1"].weight.data.copy_(
get_tensor(f"{prefix}.mlp.fc1.weight")
)
model.text["blocks"][i]["mlp"]["fc1"].bias.data.copy_(
get_tensor(f"{prefix}.mlp.fc1.bias")
)
model.text["blocks"][i]["mlp"]["fc2"].weight.data.copy_(
get_tensor(f"{prefix}.mlp.fc2.weight")
)
model.text["blocks"][i]["mlp"]["fc2"].bias.data.copy_(
get_tensor(f"{prefix}.mlp.fc2.bias")
)
model.text["post_ln"].weight.data.copy_(get_tensor("text_model.lm_head.ln.weight"))
model.text["post_ln"].bias.data.copy_(get_tensor("text_model.lm_head.ln.bias"))
model.text["lm_head"].weight.data.copy_(
get_tensor("text_model.lm_head.linear.weight")
)
model.text["lm_head"].bias.data.copy_(get_tensor("text_model.lm_head.linear.bias"))
# Region Model
model.region.coord_features.data.copy_(
get_tensor("region_model.coordinate_features.weight").T
)
model.region["coord_encoder"].weight.data.copy_(
get_tensor("region_model.coordinate_encoder.weight")
)
model.region["coord_encoder"].bias.data.copy_(
get_tensor("region_model.coordinate_encoder.bias")
)
model.region["coord_decoder"]["fc1"].weight.data.copy_(
get_tensor("region_model.coordinate_decoder.fc1.weight")
)
model.region["coord_decoder"]["fc1"].bias.data.copy_(
get_tensor("region_model.coordinate_decoder.fc1.bias")
)
model.region["coord_decoder"]["fc2"].weight.data.copy_(
get_tensor("region_model.coordinate_decoder.fc2.weight")
)
model.region["coord_decoder"]["fc2"].bias.data.copy_(
get_tensor("region_model.coordinate_decoder.fc2.bias")
)
model.region.size_features.data.copy_(
get_tensor("region_model.size_features.weight").T
)
model.region["size_encoder"].weight.data.copy_(
get_tensor("region_model.size_encoder.weight")
)
model.region["size_encoder"].bias.data.copy_(
get_tensor("region_model.size_encoder.bias")
)
model.region["size_decoder"]["fc1"].weight.data.copy_(
get_tensor("region_model.size_decoder.fc1.weight")
)
model.region["size_decoder"]["fc1"].bias.data.copy_(
get_tensor("region_model.size_decoder.fc1.bias")
)
model.region["size_decoder"]["fc2"].weight.data.copy_(
get_tensor("region_model.size_decoder.fc2.weight")
)
model.region["size_decoder"]["fc2"].bias.data.copy_(
get_tensor("region_model.size_decoder.fc2.bias")
)
def load_weights_from_safetensors(weights_file: str, model: nn.Module) -> None:
"""Load weights from a safetensors file into a MoondreamModel instance."""
with safetensors_open(weights_file) as get_tensor:
# Wrap the get_tensor function to handle key normalization
name_map = {k.replace("._orig_mod", ""): k for k in get_tensor.keys()}
_load_weights(lambda x: get_tensor(name_map[x]).to(dtype=torch.float16), model)
def load_weights_from_pt(weights_file: str, model: nn.Module) -> None:
"""Load weights from a PyTorch file into a MoondreamModel instance."""
device = str(torch.empty(0).device)
tensors = torch.load(weights_file, map_location=device, weights_only=True)
tensors = {
k.replace("._orig_mod", ""): v.to(dtype=torch.float16)
for k, v in tensors.items()
}
_load_weights(lambda x: tensors[x], model)
def load_weights_into_model(weights_file: str, model: nn.Module) -> None:
"""
Load weights from either a safetensors or PyTorch file directly into a MoondreamModel instance.
Args:
weights_file: Path to weights file (either .safetensors or .pt)
model: MoondreamModel instance to load weights into
"""
if weights_file.endswith(".safetensors"):
load_weights_from_safetensors(weights_file, model)
else:
load_weights_from_pt(weights_file, model)
# Make all parameters contiguous
for param in model.parameters():
param.data = param.data.contiguous()
|