File size: 6,851 Bytes
05d640e
 
8ef2cad
05d640e
235555c
05d640e
235555c
05d640e
 
 
 
 
 
 
 
 
 
8ef2cad
05d640e
8ef2cad
05d640e
 
8ef2cad
 
235555c
05d640e
 
 
 
8ef2cad
235555c
 
8ef2cad
 
235555c
 
8ef2cad
235555c
 
 
05d640e
 
8ef2cad
 
 
 
 
 
 
05d640e
 
235555c
 
 
 
 
 
 
 
8ef2cad
05d640e
 
8ef2cad
 
 
 
 
 
 
05d640e
8ef2cad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d640e
 
8ef2cad
 
 
 
 
 
05d640e
 
 
8ef2cad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235555c
8ef2cad
 
235555c
 
 
 
 
 
 
 
8ef2cad
 
05d640e
 
 
8ef2cad
05d640e
 
8ef2cad
 
235555c
05d640e
235555c
8ef2cad
05d640e
8ef2cad
05d640e
 
 
 
 
8ef2cad
05d640e
 
 
8ef2cad
 
 
 
05d640e
 
 
8ef2cad
235555c
8ef2cad
05d640e
 
 
 
 
 
 
 
 
235555c
 
05d640e
 
 
 
 
 
235555c
8ef2cad
05d640e
235555c
8ef2cad
05d640e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import torch.nn as nn

from torch.nn import functional as F
from typing import Optional

from .layers import layer_norm, mlp, QuantizedLinear
from .rope import apply_rotary_emb, precompute_freqs_cis
from .config import TextConfig


def text_encoder(input_ids: torch.Tensor, w: nn.Module):
    return F.embedding(input_ids, w.wte)


def attn(
    x: torch.Tensor,
    w: nn.Module,
    freqs_cis: torch.Tensor,
    kv_cache: nn.Module,
    attn_mask: torch.Tensor,
    n_heads: int,
    n_kv_heads: int,
    position_ids: torch.Tensor,
    lora: Optional[dict],
):
    bsz, q_len, d_model = x.shape
    head_dim = d_model // n_heads

    qkv_out = w.qkv(x)  # shape: (bsz, q_len, (n_heads + 2*n_kv_heads)*head_dim)
    if lora is not None:
        qkv_out += F.linear(F.linear(x, lora["qkv"]["A"]), lora["qkv"]["B"])
    q_dim = n_heads * head_dim
    kv_dim = n_kv_heads * head_dim
    q, k, v = qkv_out.split([q_dim, kv_dim, kv_dim], dim=-1)
    del qkv_out

    q = q.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
    k = k.view(bsz, q_len, n_kv_heads, head_dim).transpose(1, 2)
    v = v.view(bsz, q_len, n_kv_heads, head_dim).transpose(1, 2)

    q = apply_rotary_emb(q, freqs_cis, position_ids, n_heads)
    k = apply_rotary_emb(k, freqs_cis, position_ids, n_kv_heads)

    if kv_cache is not None:
        k, v = kv_cache.update(position_ids, k, v)

    out = F.scaled_dot_product_attention(
        q, k, v, attn_mask=attn_mask, enable_gqa=n_heads != n_kv_heads
    )
    out = out.transpose(1, 2).reshape(bsz, q_len, d_model)

    out0 = w.proj(out)
    if lora is not None:
        out1 = F.linear(F.linear(x, lora["proj"]["A"]), lora["proj"]["B"])
        out = out0 + out1
    else:
        out = out0

    return out


def _attn(
    x: torch.Tensor,
    w: torch.Tensor,
    freqs_cis: torch.Tensor,
    attn_mask: torch.Tensor,
    n_heads: int,
    n_kv_heads: int,
):
    bsz, q_len, d_model = x.shape
    head_dim = d_model // n_heads
    pos = 0

    qkv_out = w.qkv(x)  # shape: (bsz, q_len, (n_heads + 2*n_kv_heads)*head_dim)
    q_dim = n_heads * head_dim
    kv_dim = n_kv_heads * head_dim

    q = qkv_out[..., :q_dim].view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
    k = (
        qkv_out[..., q_dim : q_dim + kv_dim]
        .view(bsz, q_len, n_kv_heads, head_dim)
        .transpose(1, 2)
    )
    v = (
        qkv_out[..., q_dim + kv_dim :]
        .view(bsz, q_len, n_kv_heads, head_dim)
        .transpose(1, 2)
    )

    position_ids = torch.arange(pos, pos + q_len, dtype=torch.long)
    q = apply_rotary_emb(q, freqs_cis, position_ids, n_heads)
    k = apply_rotary_emb(k, freqs_cis, position_ids, n_kv_heads)
    out = F.scaled_dot_product_attention(
        q, k, v, attn_mask=attn_mask, enable_gqa=n_heads != n_kv_heads
    )
    out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
    out = w.proj(out)
    return out


def _produce_hidden(inputs_embeds: torch.Tensor, w: nn.Module, config: TextConfig):
    hidden_BTC = inputs_embeds

    bsz, q_len, d_model = inputs_embeds.shape
    attn_mask = torch.zeros(q_len, q_len)
    attn_mask[:730, :730] = 1
    for i in range(730, q_len):
        attn_mask[i, : i + 1] = 1
    attn_mask = attn_mask.to(dtype=torch.bool)

    for i, block in enumerate(w.blocks):
        l_in = layer_norm(hidden_BTC, block.ln)
        l_attn = _attn(
            x=l_in,
            w=block.attn,
            freqs_cis=w.freqs_cis,
            attn_mask=attn_mask,
            n_heads=config.n_heads,
            n_kv_heads=config.n_kv_heads,
        )
        l_mlp = mlp(l_in, block.mlp)
        hidden_BTC = hidden_BTC + l_attn + l_mlp

    return hidden_BTC


def text_decoder(
    x: torch.Tensor,
    w: nn.Module,
    attn_mask: torch.Tensor,
    position_ids: torch.Tensor,
    config: TextConfig,
    lora: Optional[dict],
):
    for i, block in enumerate(w.blocks):
        if lora is not None:
            layer_lora = lora["text"]["blocks"][str(i)]
            mlp_lora = layer_lora["mlp"]
            attn_lora = layer_lora["attn"]
        else:
            mlp_lora = None
            attn_lora = None

        l_in = layer_norm(x, block.ln)
        l_attn = attn(
            l_in,
            block.attn,
            freqs_cis=w.freqs_cis,
            kv_cache=block.kv_cache,
            attn_mask=attn_mask,
            n_heads=config.n_heads,
            n_kv_heads=config.n_kv_heads,
            position_ids=position_ids,
            lora=attn_lora,
        )
        l_mlp = mlp(l_in, block.mlp, lora=mlp_lora)
        x = x + l_attn + l_mlp

    return x


def lm_head(hidden_BTC: torch.Tensor, w: nn.Module):
    hidden_BC = hidden_BTC[:, -1, :]
    hidden_BC = layer_norm(hidden_BC, w.post_ln)
    logits = w.lm_head(hidden_BC)
    return logits


def _lm_head(hidden_BTC: torch.Tensor, w: nn.Module):
    hidden_BTC = layer_norm(hidden_BTC, w.post_ln)
    logits = w.lm_head(hidden_BTC)
    return logits


def build_text_model(config: TextConfig, dtype: torch.dtype) -> nn.Module:
    qkv_dim = int(config.dim * (1 + 2 * config.n_kv_heads / config.n_heads))
    linear_cls = QuantizedLinear if config.group_size is not None else nn.Linear

    text = nn.ModuleDict(
        {
            "blocks": nn.ModuleList(
                [
                    nn.ModuleDict(
                        {
                            "ln": nn.LayerNorm(config.dim, dtype=dtype),
                            "attn": nn.ModuleDict(
                                {
                                    "qkv": linear_cls(config.dim, qkv_dim, dtype=dtype),
                                    "proj": linear_cls(
                                        config.dim, config.dim, dtype=dtype
                                    ),
                                }
                            ),
                            "mlp": nn.ModuleDict(
                                {
                                    "fc1": linear_cls(
                                        config.dim, config.ff_dim, dtype=dtype
                                    ),
                                    "fc2": linear_cls(
                                        config.ff_dim, config.dim, dtype=dtype
                                    ),
                                }
                            ),
                        }
                    )
                    for _ in range(config.n_layers)
                ]
            ),
            "post_ln": nn.LayerNorm(config.dim, dtype=dtype),
            "lm_head": nn.Linear(config.dim, config.vocab_size, dtype=dtype),
        }
    )
    text.wte = nn.Parameter(torch.empty(config.vocab_size, config.dim, dtype=dtype))
    text.register_buffer(
        "freqs_cis",
        precompute_freqs_cis(config.dim // (2 * config.n_heads), config.max_context),
        persistent=False,
    )

    return text