File size: 9,709 Bytes
05d640e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import safetensors
import torch
import torch.nn as nn

from contextlib import contextmanager
from dataclasses import dataclass
from typing import Callable, List

from .layers import AttentionWeights, LayerNormWeights, LinearWeights, MLPWeights


@dataclass
class VisionBlock:
    ln1: LayerNormWeights
    attn: AttentionWeights
    ln2: LayerNormWeights
    mlp: MLPWeights


@dataclass
class VisionModel:
    patch_emb: LinearWeights
    pos_emb: torch.Tensor
    blocks: List[VisionBlock]
    post_ln: LayerNormWeights
    proj_mlp: MLPWeights


@dataclass
class TextBlock:
    ln: LayerNormWeights
    attn: AttentionWeights
    mlp: MLPWeights


@dataclass
class TextModel:
    wte: torch.Tensor
    blocks: List[TextBlock]
    post_ln: LayerNormWeights
    lm_head: LinearWeights


@dataclass
class RegionModel:
    coord_features: torch.Tensor
    coord_encoder: LinearWeights
    coord_decoder: MLPWeights
    size_features: torch.Tensor
    size_encoder: LinearWeights
    size_decoder: MLPWeights


@dataclass
class MoondreamModel:
    vision: VisionModel
    text: TextModel
    region: RegionModel


@contextmanager
def safetensors_open(safetensors_file: str):
    """
    Simplify interfacing with safetensors files. Eliminates the need to ignore
    type errors when using the `safe_open` function.
    """
    with safetensors.safe_open(
        safetensors_file, framework="pt"
    ) as st:  # pyright: ignore

        def get_tensor(name: str) -> torch.Tensor:
            return st.get_tensor(name)

        def get_keys() -> List[str]:
            return st.keys()

        get_tensor.keys = get_keys

        yield get_tensor


def _load_weights(get_tensor: Callable[[str], torch.Tensor], model: nn.Module) -> None:
    """Internal function to load weights using a tensor getter function."""
    model = model.to(dtype=torch.float16)

    # Vision Model
    model.vision["patch_emb"].weight.data.copy_(
        get_tensor("vision_encoder.encoder.model.visual.patch_embed.linear.weight")
    )
    model.vision["patch_emb"].bias.data.copy_(
        get_tensor("vision_encoder.encoder.model.visual.patch_embed.linear.bias")
    )
    model.vision.pos_emb.data.copy_(
        get_tensor("vision_encoder.encoder.model.visual.pos_embed")
    )

    for i in range(len(model.vision["blocks"])):
        prefix = f"vision_encoder.encoder.model.visual.blocks.{i}"

        # Layer norms
        model.vision["blocks"][i]["ln1"].weight.data.copy_(
            get_tensor(f"{prefix}.norm1.weight")
        )
        model.vision["blocks"][i]["ln1"].bias.data.copy_(
            get_tensor(f"{prefix}.norm1.bias")
        )
        model.vision["blocks"][i]["ln2"].weight.data.copy_(
            get_tensor(f"{prefix}.norm2.weight")
        )
        model.vision["blocks"][i]["ln2"].bias.data.copy_(
            get_tensor(f"{prefix}.norm2.bias")
        )

        # Attention
        model.vision["blocks"][i]["attn"]["qkv"].weight.data.copy_(
            get_tensor(f"{prefix}.attn.qkv.weight")
        )
        model.vision["blocks"][i]["attn"]["qkv"].bias.data.copy_(
            get_tensor(f"{prefix}.attn.qkv.bias")
        )
        model.vision["blocks"][i]["attn"]["proj"].weight.data.copy_(
            get_tensor(f"{prefix}.attn.proj.weight")
        )
        model.vision["blocks"][i]["attn"]["proj"].bias.data.copy_(
            get_tensor(f"{prefix}.attn.proj.bias")
        )

        # MLP
        model.vision["blocks"][i]["mlp"]["fc1"].weight.data.copy_(
            get_tensor(f"{prefix}.mlp.fc1.weight")
        )
        model.vision["blocks"][i]["mlp"]["fc1"].bias.data.copy_(
            get_tensor(f"{prefix}.mlp.fc1.bias")
        )
        model.vision["blocks"][i]["mlp"]["fc2"].weight.data.copy_(
            get_tensor(f"{prefix}.mlp.fc2.weight")
        )
        model.vision["blocks"][i]["mlp"]["fc2"].bias.data.copy_(
            get_tensor(f"{prefix}.mlp.fc2.bias")
        )

    model.vision["post_ln"].weight.data.copy_(
        get_tensor("vision_encoder.encoder.model.visual.norm.weight")
    )
    model.vision["post_ln"].bias.data.copy_(
        get_tensor("vision_encoder.encoder.model.visual.norm.bias")
    )

    model.vision["proj_mlp"]["fc1"].weight.data.copy_(
        get_tensor("vision_encoder.projection.mlp.fc1.weight")
    )
    model.vision["proj_mlp"]["fc1"].bias.data.copy_(
        get_tensor("vision_encoder.projection.mlp.fc1.bias")
    )
    model.vision["proj_mlp"]["fc2"].weight.data.copy_(
        get_tensor("vision_encoder.projection.mlp.fc2.weight")
    )
    model.vision["proj_mlp"]["fc2"].bias.data.copy_(
        get_tensor("vision_encoder.projection.mlp.fc2.bias")
    )

    # Text Model
    model.text.wte.data.copy_(get_tensor("text_model.transformer.embd.wte.weight"))

    for i in range(len(model.text["blocks"])):
        prefix = f"text_model.transformer.h.{i}"

        # Layer norm
        model.text["blocks"][i]["ln"].weight.data.copy_(
            get_tensor(f"{prefix}.ln.weight")
        )
        model.text["blocks"][i]["ln"].bias.data.copy_(get_tensor(f"{prefix}.ln.bias"))

        # Attention
        model.text["blocks"][i]["attn"]["qkv"].weight.data.copy_(
            get_tensor(f"{prefix}.mixer.Wqkv.weight")
        )
        model.text["blocks"][i]["attn"]["qkv"].bias.data.copy_(
            get_tensor(f"{prefix}.mixer.Wqkv.bias")
        )
        model.text["blocks"][i]["attn"]["proj"].weight.data.copy_(
            get_tensor(f"{prefix}.mixer.out_proj.weight")
        )
        model.text["blocks"][i]["attn"]["proj"].bias.data.copy_(
            get_tensor(f"{prefix}.mixer.out_proj.bias")
        )

        # MLP
        model.text["blocks"][i]["mlp"]["fc1"].weight.data.copy_(
            get_tensor(f"{prefix}.mlp.fc1.weight")
        )
        model.text["blocks"][i]["mlp"]["fc1"].bias.data.copy_(
            get_tensor(f"{prefix}.mlp.fc1.bias")
        )
        model.text["blocks"][i]["mlp"]["fc2"].weight.data.copy_(
            get_tensor(f"{prefix}.mlp.fc2.weight")
        )
        model.text["blocks"][i]["mlp"]["fc2"].bias.data.copy_(
            get_tensor(f"{prefix}.mlp.fc2.bias")
        )

    model.text["post_ln"].weight.data.copy_(get_tensor("text_model.lm_head.ln.weight"))
    model.text["post_ln"].bias.data.copy_(get_tensor("text_model.lm_head.ln.bias"))

    model.text["lm_head"].weight.data.copy_(
        get_tensor("text_model.lm_head.linear.weight")
    )
    model.text["lm_head"].bias.data.copy_(get_tensor("text_model.lm_head.linear.bias"))

    # Region Model
    model.region.coord_features.data.copy_(
        get_tensor("region_model.coordinate_features.weight").T
    )
    model.region["coord_encoder"].weight.data.copy_(
        get_tensor("region_model.coordinate_encoder.weight")
    )
    model.region["coord_encoder"].bias.data.copy_(
        get_tensor("region_model.coordinate_encoder.bias")
    )

    model.region["coord_decoder"]["fc1"].weight.data.copy_(
        get_tensor("region_model.coordinate_decoder.fc1.weight")
    )
    model.region["coord_decoder"]["fc1"].bias.data.copy_(
        get_tensor("region_model.coordinate_decoder.fc1.bias")
    )
    model.region["coord_decoder"]["fc2"].weight.data.copy_(
        get_tensor("region_model.coordinate_decoder.fc2.weight")
    )
    model.region["coord_decoder"]["fc2"].bias.data.copy_(
        get_tensor("region_model.coordinate_decoder.fc2.bias")
    )

    model.region.size_features.data.copy_(
        get_tensor("region_model.size_features.weight").T
    )
    model.region["size_encoder"].weight.data.copy_(
        get_tensor("region_model.size_encoder.weight")
    )
    model.region["size_encoder"].bias.data.copy_(
        get_tensor("region_model.size_encoder.bias")
    )

    model.region["size_decoder"]["fc1"].weight.data.copy_(
        get_tensor("region_model.size_decoder.fc1.weight")
    )
    model.region["size_decoder"]["fc1"].bias.data.copy_(
        get_tensor("region_model.size_decoder.fc1.bias")
    )
    model.region["size_decoder"]["fc2"].weight.data.copy_(
        get_tensor("region_model.size_decoder.fc2.weight")
    )
    model.region["size_decoder"]["fc2"].bias.data.copy_(
        get_tensor("region_model.size_decoder.fc2.bias")
    )


def load_weights_from_safetensors(weights_file: str, model: nn.Module) -> None:
    """Load weights from a safetensors file into a MoondreamModel instance."""
    with safetensors_open(weights_file) as get_tensor:
        # Wrap the get_tensor function to handle key normalization
        name_map = {k.replace("._orig_mod", ""): k for k in get_tensor.keys()}
        _load_weights(lambda x: get_tensor(name_map[x]).to(dtype=torch.float16), model)


def load_weights_from_pt(weights_file: str, model: nn.Module) -> None:
    """Load weights from a PyTorch file into a MoondreamModel instance."""
    device = str(torch.empty(0).device)
    tensors = torch.load(weights_file, map_location=device, weights_only=True)
    tensors = {
        k.replace("._orig_mod", ""): v.to(dtype=torch.float16)
        for k, v in tensors.items()
    }
    _load_weights(lambda x: tensors[x], model)


def load_weights_into_model(weights_file: str, model: nn.Module) -> None:
    """
    Load weights from either a safetensors or PyTorch file directly into a MoondreamModel instance.

    Args:
        weights_file: Path to weights file (either .safetensors or .pt)
        model: MoondreamModel instance to load weights into
    """
    if weights_file.endswith(".safetensors"):
        load_weights_from_safetensors(weights_file, model)
    else:
        load_weights_from_pt(weights_file, model)

    # Make all parameters contiguous
    for param in model.parameters():
        param.data = param.data.contiguous()