File size: 5,308 Bytes
05d640e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
from torch.nn import functional as F

from .layers import layer_norm, linear, mlp
from .rope import apply_rotary_emb, precompute_freqs_cis
from .weights import AttentionWeights
from .config import TextConfig


def text_encoder(input_ids: torch.Tensor, w: nn.Module):
    return F.embedding(input_ids, w.wte)


def attn(
    x: torch.Tensor,
    w: AttentionWeights,
    freqs_cis: torch.Tensor,
    layer_kv_cache: torch.Tensor,
    attn_mask: torch.Tensor,
    n_heads: int,
    pos: int,
):
    bsz, q_len, d_model = x.shape
    head_dim = d_model // n_heads

    q, k, v = [
        t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
        for t in linear(x, w.qkv).chunk(3, dim=-1)
    ]

    position_ids = torch.arange(pos, pos + q_len, dtype=torch.long)
    q = apply_rotary_emb(q, freqs_cis, position_ids, n_heads)
    k = apply_rotary_emb(k, freqs_cis, position_ids, n_heads)

    k_, v_ = k, v
    if layer_kv_cache is not None:
        k = torch.cat([layer_kv_cache[0, :, :, :pos, :], k], dim=2)
        v = torch.cat([layer_kv_cache[1, :, :, :pos, :], v], dim=2)

    out = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask).to(
        # This type conversion isn't needed when running in PyTorch directly, but the
        # ONNX export runs attention in float32 because the attention mask is cast to
        # float32.
        x.dtype
    )
    out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
    out = linear(out, w.proj)
    return out, torch.stack([k_, v_])


def text_decoder(
    inputs_embeds: torch.Tensor,
    w: nn.Module,
    kv_cache: torch.Tensor,
    pos: int,
    config: TextConfig,
):
    hidden_BTC = inputs_embeds
    new_kv_cache = [torch.empty(0)] * len(w.blocks)

    attn_mask = w.attn_mask[
        :, :, pos : pos + hidden_BTC.size(1), : pos + hidden_BTC.size(1)
    ]

    for i, block in enumerate(w.blocks):
        l_in = layer_norm(hidden_BTC, block.ln)
        l_attn, new_kv_cache[i] = attn(
            l_in,
            block.attn,
            freqs_cis=w.freqs_cis,
            layer_kv_cache=kv_cache[i],
            attn_mask=attn_mask,
            n_heads=config.n_heads,
            pos=pos,
        )
        l_mlp = mlp(l_in, block.mlp)
        hidden_BTC = hidden_BTC + l_attn + l_mlp

    return hidden_BTC, torch.stack(new_kv_cache)


def lm_head(hidden_BTC: torch.Tensor, w: nn.Module):
    hidden_BC = hidden_BTC[:, -1, :]
    hidden_BC = layer_norm(hidden_BC, w.post_ln)
    logits = linear(hidden_BC, w.lm_head)
    return logits


def prefill(
    inputs_embeds: torch.Tensor,
    kv_cache: torch.Tensor,
    pos: int,
    w: nn.Module,
    config: TextConfig,
):
    # Updates kv_cache in-place
    hidden, kv_cache[:, :, :, :, pos : pos + inputs_embeds.size(1), :] = text_decoder(
        inputs_embeds, w, kv_cache, pos, config
    )
    return hidden


def decode_one_token(
    token_emb: torch.Tensor,
    kv_cache: torch.Tensor,
    pos: int,
    w: nn.Module,
    config: TextConfig,
):
    hidden, kv_cache_update = text_decoder(token_emb[None], w, kv_cache, pos, config)
    logits = lm_head(hidden, w)
    return logits, hidden, kv_cache_update


def build_text_model(config: TextConfig, dtype: torch.dtype) -> nn.Module:
    text = nn.ModuleDict(
        {
            "blocks": nn.ModuleList(
                [
                    nn.ModuleDict(
                        {
                            "ln": nn.LayerNorm(config.dim, dtype=dtype),
                            "attn": nn.ModuleDict(
                                {
                                    "qkv": nn.Linear(
                                        config.dim, 3 * config.dim, dtype=dtype
                                    ),
                                    "proj": nn.Linear(
                                        config.dim, config.dim, dtype=dtype
                                    ),
                                }
                            ),
                            "mlp": nn.ModuleDict(
                                {
                                    "fc1": nn.Linear(
                                        config.dim, 4 * config.dim, dtype=dtype
                                    ),
                                    "fc2": nn.Linear(
                                        4 * config.dim, config.dim, dtype=dtype
                                    ),
                                }
                            ),
                        }
                    )
                    for _ in range(config.n_layers)
                ]
            ),
            "post_ln": nn.LayerNorm(config.dim, dtype=dtype),
            "lm_head": nn.Linear(config.dim, config.vocab_size, dtype=dtype),
        }
    )
    text.wte = nn.Parameter(torch.empty(config.vocab_size, config.dim, dtype=dtype))
    text.register_buffer(
        "freqs_cis",
        precompute_freqs_cis(config.dim // (2 * config.n_heads), config.max_context),
        persistent=False,
    )

    attn_mask = torch.tril(
        torch.ones(1, 1, config.max_context, config.max_context, dtype=torch.bool)
    )
    if config.prefix_attn != 0:
        attn_mask[..., : config.prefix_attn, : config.prefix_attn] = 1
    text.register_buffer("attn_mask", attn_mask, persistent=False)

    return text