File size: 4,940 Bytes
f5943d1
9ba2958
f5943d1
 
 
 
 
 
 
 
 
 
 
 
9ba2958
 
f5943d1
9ba2958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5943d1
 
9ba2958
 
 
f5943d1
 
9ba2958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5943d1
9ba2958
f5943d1
 
9ba2958
f5943d1
 
 
9ba2958
 
f5943d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba2958
f5943d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba2958
f5943d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c064b4c
 
 
 
f5943d1
c064b4c
 
 
 
f5943d1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
from torchvision.transforms.v2 import (
    Compose,
    Resize,
    InterpolationMode,
    ToImage,
    ToDtype,
    Normalize,
)


class Attention(nn.Module):
    def __init__(self, dim, num_heads=16):
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"

        self.num_heads = num_heads
        self.head_dim = dim // num_heads

        self.qkv = nn.Linear(dim, dim * 3)
        self.proj = nn.Linear(dim, dim)

        torch.nn.init.kaiming_normal_(
            self.qkv.weight, mode="fan_in", nonlinearity="relu"
        )
        torch.nn.init.kaiming_normal_(
            self.proj.weight, mode="fan_in", nonlinearity="relu"
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, self.head_dim)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(0)

        x = F.scaled_dot_product_attention(q, k, v)

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        return x


class VitBlock(nn.Module):
    def __init__(self, embed_dim):
        super().__init__()
        self.attn = Attention(embed_dim)
        self.mlp = MLP(embed_dim, 4304)
        self.norm1 = nn.LayerNorm(embed_dim)
        self.norm2 = nn.LayerNorm(embed_dim)

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.mlp(self.norm2(x))
        return x


class VisionTransformer(nn.Module):

    def __init__(self):
        super().__init__()

        embed_len = 729
        embed_dim = 1152

        self.patch_embed = LinearPatchEmbedding()
        self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
        self.blocks = nn.Sequential(*[VitBlock(embed_dim) for _ in range(27)])
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):
        x = self.patch_embed(x)
        x = x + self.pos_embed
        for block in self.blocks:
            x = block(x)
        return self.norm(x)


class EncoderWrapper(nn.Module):

    def __init__(self):
        super().__init__()
        self.model = nn.ModuleDict({"visual": VisionTransformer()})

    def forward(self, x):
        return self.model["visual"](x)


class LinearPatchEmbedding(nn.Module):

    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(588, 1152)

    def forward(self, x):
        return self.linear(x)


class MLP(nn.Module):
    def __init__(
        self,
        in_features: int,
        hidden_features: int = None,
        out_features: int = None,
    ) -> None:
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = nn.GELU(approximate="tanh")
        self.fc2 = nn.Linear(hidden_features, out_features)

        torch.nn.init.kaiming_normal_(
            self.fc1.weight, mode="fan_in", nonlinearity="relu"
        )
        torch.nn.init.kaiming_normal_(
            self.fc2.weight, mode="fan_in", nonlinearity="relu"
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


class VisionProjection(nn.Module):
    def __init__(self):
        super().__init__()

        image_embedding_dim = 1152
        model_dim = 2048
        hidden_dim = model_dim * 4

        self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim)

    @property
    def device(self):
        return self.mlp.fc1.weight.device

    def forward(self, x):
        return self.mlp(x)


class VisionEncoder(nn.Module):
    def __init__(self) -> None:
        super().__init__()

        self.encoder = EncoderWrapper()
        self.projection = VisionProjection()

        self.preprocess = Compose(
            [
                Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC),
                ToImage(),
                ToDtype(torch.float32, scale=True),
                Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            ]
        )

    @property
    def device(self):
        return self.projection.mlp.fc1.weight.device

    @property
    def dtype(self):
        return self.projection.mlp.fc1.weight.dtype

    def __call__(self, images) -> torch.Tensor:
        if not isinstance(images, list):
            images = [images]

        with torch.no_grad():
            x = torch.stack(
                [self.preprocess(image.convert("RGB")) for image in images]
            ).to(self.device, dtype=self.dtype)

            x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14)

            x = self.encoder(x)
            x = self.projection(x)

            return x