File size: 2,406 Bytes
8e61299 fa96f27 8e61299 fa96f27 8e61299 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: apache-2.0
tags:
- injection
- security
- llm
- prompt-injection
---
# Model Card for Vijil Prompt Injection
## Model Details
### Model Description
This model is a fine-tuned version of ModernBert to classify prompt-injection prompts which can manipulate language models into producing unintended outputs.
- **Developed by:** Vijil AI
- **License:** apache-2.0
- **Finetuned version of [ModernBERT](https://huggingface.co/docs/transformers/en/model_doc/modernbert)**
## Uses
Prompt injection attacks manipulate language models by inserting or altering prompts to trigger harmful or unintended responses.
The vijil/vijil_dome_prompt_injection_detection model is designed to enhance security in language model applications by detecting prompt-injection attacks.
## How to Get Started with the Model
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
model = AutoModelForSequenceClassification.from_pretrained("vijil/vijil_dome_prompt_injection_detection")
classifier = pipeline(
"text-classification",
model=model,
tokenizer=tokenizer,
truncation=True,
max_length=512,
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
)
print(classifier("this is a prompt-injection prompt"))
```
## Training Details
### Training Data
The dataset used for training the model was taken from
[wildguardmix/train](https://huggingface.co/datasets/allenai/wildguardmix)
and
[safe-guard-prompt-injection/train](https://huggingface.co/datasets/xTRam1/safe-guard-prompt-injection)
### Training Procedure
Supervised finetuning with above dataset
#### Training Hyperparameters
* learning_rate: 5e-05
* train_batch_size: 32
* eval_batch_size: 32
* optimizer: adamw_torch_fused
* lr_scheduler_type: cosine_with_restarts
* warmup_ratio: 0.1
* num_epochs: 3
## Evaluation
* Training Loss: 0.0036
* Validation Loss: 0.209392
* Accuracy: 0.961538
* Precision: 0.958362
* Recall: 0.957055
* Fl: 0.957708
#### Testing Data
The dataset used for training the model was taken from
[wildguardmix/test](https://huggingface.co/datasets/allenai/wildguardmix)
and
[safe-guard-prompt-injection/test](https://huggingface.co/datasets/xTRam1/safe-guard-prompt-injection)
### Results
## Model Card Contact
https://vijil.ai |