File size: 9,956 Bytes
0f8f216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: i honestly thought impossible at this point i feel pretty
- text: i feel convinced that im going to shy away from whatever is really good for
    me
- text: i feel guilt that i should be more caring and im not
- text: i found myself feeling nostalgic as i thought about the temporarily abandoned
    little bishop chronicles
- text: i am feeling very indecisive and spontaneous
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.621
      name: Accuracy
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | <ul><li>'i don t feel so self assured i need to compete or to justify why i m so clearly not doing as well as someone else'</li><li>'i should do but i think it means that i should always be open to opportunities of inviting and involving others in ministries and that i should be creative in finding ways for others to participate in and feel welcomed into such ministries'</li><li>'i feel like im going to be way more successful a writer because of it'</li></ul> |
| 4     | <ul><li>'i feel so weird and scattered with all wonders about a million different things'</li><li>'i mean already as a parent from the moment the iolani left my body i can tell you i feel like im constantly fearful for something horrible happening to her thats out of my control'</li><li>'i think i was feeling vulnerable due to the stress of having to buy a new sewing machine and printer'</li></ul>                                                                |
| 5     | <ul><li>'i feel like this inside theres one thing i wanna know whats so funny bout peace love and understanding'</li><li>'i feel like itd be strange at the least and possibly offensive to tell a gay friend id like to experiment or something like that'</li><li>'i am not sure why in that moment that i thought i would be able to feel it hellip but it was pretty funny'</li></ul>                                                                                       |
| 2     | <ul><li>'i can feel that gentle rhythm imprinted on my skin i vibrates up my arm my stomach clenches my legs squeeze i forget his own leg has somehow ended up between mine'</li><li>'i feel specially fond of'</li><li>'i just feel like i dont like supporting walmart because maceys has such good family values and is closed on sundays and isnt trying to take over mom and pop stores but i have to be a smart consumer too'</li></ul>                                   |
| 3     | <ul><li>'i am sure the vast majority of decent working class people feel insulted about being derided as unable to be respectful towards referees and are the parents who watch their child s match shouting abuse and swearing etc'</li><li>'im feeling irritated by her friggin name'</li><li>'i feel heartless now feeling bored and not believe in love anymore'</li></ul>                                                                                                  |
| 0     | <ul><li>'i had just begun to feel like teaching was my metier but am now resigned to the fact that i likely wont teach at university ever again'</li><li>'i think the most common one that everyone has experienced is that doom and gloom feeling where you just feel like something tragic just happened'</li><li>'i feel a bit foolish now because in the last years they havent come back to my home town and i have had to travel to england to see them'</li></ul>        |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.621    |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vidhi0206/setfit-paraphrase-mpnet-emotionv")
# Run inference
preds = model("i am feeling very indecisive and spontaneous")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 5   | 20.4375 | 47  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 8                     |
| 1     | 8                     |
| 2     | 8                     |
| 3     | 8                     |
| 4     | 8                     |
| 5     | 8                     |

### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0042 | 1    | 0.2804        | -               |
| 0.2083 | 50   | 0.0724        | -               |
| 0.4167 | 100  | 0.0512        | -               |
| 0.625  | 150  | 0.0108        | -               |
| 0.8333 | 200  | 0.0027        | -               |

### Framework Versions
- Python: 3.8.10
- SetFit: 1.0.3
- Sentence Transformers: 2.3.1
- Transformers: 4.37.2
- PyTorch: 2.2.0+cu121
- Datasets: 2.17.0
- Tokenizers: 0.15.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->