diff --git "a/BanglaGemma9b_GGUF.ipynb" "b/BanglaGemma9b_GGUF.ipynb" new file mode 100644--- /dev/null +++ "b/BanglaGemma9b_GGUF.ipynb" @@ -0,0 +1,7803 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "IqM-T1RTzY6C" + }, + "source": [ + "To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n", + "
\n", + " \n", + " \n", + " Join Discord if you need help + ⭐ Star us on Github ⭐\n", + "
\n", + "\n", + "To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth?tab=readme-ov-file#-installation-instructions).\n", + "\n", + "You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).\n", + "\n", + "**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**\n", + "\n", + "**[NEW] Finetuning Mistral Small 22b fits in a 16GB GPU!**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2eSvM9zX_2d3" + }, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install unsloth\n", + "# Also get the latest nightly Unsloth!\n", + "!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r2v_X2fA0Df5" + }, + "source": [ + "* We support Llama, Mistral, Phi-3, Gemma, Yi, DeepSeek, Qwen, TinyLlama, Vicuna, Open Hermes etc\n", + "* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n", + "* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n", + "* [**NEW**] We make Gemma-2 9b / 27b **2x faster**! See our [Gemma-2 9b notebook](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing)\n", + "* [**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)\n", + "* [**NEW**] We make Mistral NeMo 12B 2x faster and fit in under 12GB of VRAM! [Mistral NeMo notebook](https://colab.research.google.com/drive/17d3U-CAIwzmbDRqbZ9NnpHxCkmXB6LZ0?usp=sharing)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 403, + "referenced_widgets": [ + "51f1e28d282645a58c8b783f4f60cfc2", + "7ca5730f63b4420cab8b124a17aaeb27", + "64747677b60c489ebd3e769272533b3f", + "5c5c498bd046409c860372110e523c7c", + "ae087aee8e96402681d22d892d6cd476", + "f340840186b4458dbff47afe987f1f59", + "723b04a16f3a402589fdb9463834f3d1", + "e50f33072d6d454b98c6607f9e847401", + "3f97e7bd5fff420c80615d676e1648f0", + "e7f6f37bf5b6483788e50c112b7ef007", + "aa566decf6b4412caa2988fa623900ea", + "b90fe47ddb6240bd90ddd1705a9f3fc9", + "ca20885d9adc4815b5418073a7930f8f", + "95aa990d762d428d93cef2834fb86c8a", + "c2d228de02d14c6c8f780048b1ccc088", + "c56ce88b9fab4475af5fafbc7a845010", + "3e94165c4ab0471db8fb1fbd5b5bac0d", + "74c3cbb850e44a4c9eb8283080ba075e", + "20d356533da04942856986a33e7a99fb", + "3cdf1d5b878b41838f0ec2b4d877e97a", + "a2cde30a94d3462488bcb33693e3e274", + "f04ed92a356c489a9877f82b05bb330f", + "fe0cef5f02ca4e5e95b06356b8286fbe", + "6db31893e3f84043b5abc6a24bac8228", + "fd5eccb2370b40b58eea5c9f0d868e36", + "90762bb3d5fd4f4db67f3a8a11434689", + "004f3ec8f7a545c4bc54484dcb3022bb", + "a6500ce74ca54e0ca650851502b14644", + "de38fc3f3df348f29528d9acd6b9d981", + "a3c7c2459ad14e9c81d7422d7e83393f", + "fdd24808ed23442998104b5b28370aa6", + "2e6a26fb12084d5487525f5e78ab5ac8", + "8e082fef631b4eeab73c02e181f5690c", + "b57e30ad94fa4b739d32c9553f5aee29", + "4677d087bf6b40a3a4915ac7481f6e8d", + "90c9301c342846729db7e3c6dfe5b849", + "c7977b2008c2476596c5351012e710b6", + "dcb2b3f1102a44429e62828b99ed39ab", + "673da437f86a4371b7e3913a66de835a", + "358035cd9f6943aeadc4cba1964109a6", + "edb08520684f4f83a7094599ed55cb37", + "c2185ae3f8aa4f3488e0bd7257664e26", + "71f71606c101414bae187de7f145ea43", + "bf1ea3ec39db442d91f74fdcfd1c5ac3", + "62a6bc239405496ca1e451fbda8787f3", + "7af5367620b64131a6fef8c2864d0d28", + "d9f230d8474c40fc995c67c4f1eeb86a", + "596156e7bb7346c1808ed960997a5159", + "418ece30091b4d66aca4df6367e0bec5", + "b1610596162844658f4ac1893f0fdd40", + "87ccf938ee7641acb94c6050bb7c4b20", + "d1462aa795714430bfee51674a619527", + "cd98cb1f265448cf90adfd4fb3362b0d", + "780d3c81c8e2461694df4d515d381d9d", + "f5b0174aa23e432896d0dfe37387036b", + "a80caed5f8af41ca99576d9daa68c6f6", + "262070892253448793aba4d048f40c08", + "e5486d352f314f45b663a6472d6ff885", + "f033347d7cdb4f38a3eb3e05f546e438", + "d1549b76e8ff4d69b17f9a0831b43551", + "45d4f27475294750aff2487353c8105e", + "3926bab2dbad4e5fb4362ee96d6fdd67", + "e885fb98968949589006001c2f84a8eb", + "1fa73eafabb14c73aaee39354c62477f", + "2279b927aab74513aa1f6efb2c66c426", + "b44759c58b284a5a950350a2cf82c4e6" + ] + }, + "id": "QmUBVEnvCDJv", + "outputId": "55acd488-9a43-4d68-8b55-0e3061ff247f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n", + "==((====))== Unsloth 2024.10.7: Fast Gemma2 patching. Transformers = 4.44.2.\n", + " \\\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform = Linux.\n", + "O^O/ \\_/ \\ Pytorch: 2.5.0+cu121. CUDA = 7.5. CUDA Toolkit = 12.1.\n", + "\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.28.post2. FA2 = False]\n", + " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n", + "Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "51f1e28d282645a58c8b783f4f60cfc2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "model.safetensors: 0%| | 0.00/6.13G [00:00 0 ! Suggested 8, 16, 32, 64, 128\n", + " target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n", + " \"gate_proj\", \"up_proj\", \"down_proj\",],\n", + " lora_alpha = 16,\n", + " lora_dropout = 0, # Supports any, but = 0 is optimized\n", + " bias = \"none\", # Supports any, but = \"none\" is optimized\n", + " # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n", + " use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n", + " random_state = 3407,\n", + " use_rslora = False, # We support rank stabilized LoRA\n", + " loftq_config = None, # And LoftQ\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vITh0KVJ10qX" + }, + "source": [ + "\n", + "### Data Prep\n", + "We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.\n", + "\n", + "**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n", + "\n", + "**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n", + "\n", + "If you want to use the `mistral3` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1XamvWYinY6FOSX9GLvnqSjjsNflxdhNc?usp=sharing).\n", + "\n", + "For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 177, + "referenced_widgets": [ + "3fddd29878ba408db098fb05db157710", + "b542e0276854449d9ec4bed67279d037", + "c3143dca63c6445fb7aa06d7d764d7a9", + "e5c89397eb1a42bb895a4c540db2df1c", + "ae243226e393499bac22c08d2b3d9570", + "265fecfcffb44db580c066a04b5ea37b", + "81b34a02e519484c965524acbe252807", + "9179bf6bb49f477b9d9e5eb2f8015aaa", + "d6dff4e305aa46fbaa9375133356378a", + "e2844ec735d4420391b8ed1b9a932949", + "d1ebb90d4a8e4656941f47d644013204", + "902ea19651c546de8c19414daf6a053a", + "4e40665bc93a414c87c089a3a0bb4008", + "854179dbb6854ac5bb3d7240dcc3cb0b", + "7b64ff6c0203472391e90ce30ed4165f", + "17c55c44d870452c81d902b74c8cce79", + "2b0e9c589f9848f2aeec3a97dacf2dc5", + "a62221e4825a48caa9ef7f906fd43748", + "f9ee25b240f74c21adfa24ce54659efd", + "5b795861641e488fb6a47f88860a9ccd", + "1f6d972a105a46438f51566f5a24cf84", + "7c86fc2b3b0d4708bc2e55801894e37e", + "f8a68ea30ebd4251931cf4d7b5be62a9", + "f2f000db73f34f468b1c549c8422743a", + "1ce1838f9eb34f74a615ad82cab78274", + "0afe6c4f57a643159bc51aa36f099f61", + "cc0bc8033830406a942b67c4cbbc5d28", + "0bf1d81abe6f4a3493c29810857fc8dd", + "f31165c434c7427fb4d26ea2af0feda9", + "0a4506749df0400480090d3127285ed6", + "641f767ab42e4190bdd3d0abfe851301", + "e0211c2ff4fb46aaa85bf681c004a04c", + "a593571b38dd4fd696e3d4778d2a9f03", + "8c398b847644448e9d75135f3200f156", + "63f16ab5e462454d88927b21df4427aa", + "afb69e965b33472a8de2739c1cdff1e9", + "5455311519604e9993d537555f372a0b", + "a398a05038394c7b853237d751a0bbdd", + "68b2f241810746b7973e2b94ba4c0122", + "e4fd6646d36e4bce817e1e28dd99dc51", + "c6ede16c623b49c7b4916e5ce4799125", + "9a6fe19da592481bbe762912bc45bbed", + "9439a307ffdd4705b7a1affb46d0fb71", + "6a62779572c6495fb2594270742b6e58", + "871336e6e4134fb28bd3b2fa606059cc", + "0a8ca1638fe248d0856fd4c385f9a70b", + "93a7d487abb0476383c7e57a3da1f851", + "372011973a8e46a2888bf4299b042aa0", + "2d5c3406ed7e4e03af04711751debd71", + "afc36d622583404b942709b58027ffd2", + "8b74367efcea4a50be0c0b205dc1dd47", + "97d31d1c17d248f3b2dffe59143a9797", + "c7fbd851c32746d3a2a0e69b411b2121", + "cc0cb8826ef3428389ed6dfff6717d95", + "57f60ec03bf14970b020302f317ea97a" + ] + }, + "id": "LjY75GoYUCB8", + "outputId": "062127be-de34-40cb-b112-d799a1873d64" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3fddd29878ba408db098fb05db157710", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "README.md: 0%| | 0.00/450 [00:00\n", + "### Train the model\n", + "Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 66, + "referenced_widgets": [ + "dd252c6d1d59418aa0f5b7c469351dee", + "1949ce4af8c94c0ba7e3ac9d8df6b332", + "e096cf56562a4e7281681be173d51b09", + "89202b77af2a47b196cc8723c846e891", + "3cd94a9a96894e51a652076762478155", + "bac3b0bec13d492b86a5c65a0bb5b96f", + "8adaf5cc36a3456094e077eca79c8b7e", + "98cc2108542f443eb242a45fc671afef", + "90620de3bb6a467d92b92622e5dfb0c5", + "6f7ed19f4b77411c88223d59fa50d13a", + "9d319b570bd64f0e9176817d577bc020" + ] + }, + "id": "95_Nn-89DhsL", + "outputId": "d644b905-6f99-42e2-8539-1bf9173a04bd" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dd252c6d1d59418aa0f5b7c469351dee", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map (num_proc=2): 0%| | 0/172026 [00:00\n", + " \n", + " \n", + " [200/200 35:17, Epoch 0/1]\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StepTraining Loss
11.701200
21.496500
31.836600
41.300100
51.385700
61.406400
71.361900
81.255600
91.073400
101.055400
110.924000
120.660100
131.054300
140.642100
151.163400
161.049700
171.200700
180.638300
190.920000
200.508700
211.129800
220.805900
230.588500
240.876600
250.920100
261.080800
271.081600
280.944700
290.940600
300.942900
310.718600
320.577500
330.764700
341.111100
351.084600
360.978700
370.765000
380.895000
390.792800
400.727800
410.849400
420.775200
430.710300
441.014700
451.042400
461.225500
470.571200
481.098000
490.872600
500.741700
510.979600
520.999200
530.556200
540.660700
550.784900
560.940400
570.701900
580.968700
590.682900
600.840300
610.526800
620.961600
630.754700
641.092100
650.929000
660.804800
671.272900
681.062800
691.383400
701.233700
711.016000
720.744300
730.800700
741.008500
750.906300
760.766700
771.090200
780.807400
790.550700
800.553800
810.999900
821.292100
831.061900
841.047400
850.734200
860.391800
870.702700
880.687700
890.822200
900.705000
910.763900
920.236300
930.749500
940.445200
950.500800
960.877400
970.884400
980.887000
990.889900
1000.895900
1011.042100
1021.052900
1030.953700
1040.752700
1050.921000
1060.897100
1070.784500
1080.712600
1090.716700
1101.199900
1110.844600
1120.810800
1130.704900
1141.119300
1150.408600
1160.431300
1171.093200
1180.649600
1190.685300
1201.326500
1210.722300
1220.580700
1230.890100
1240.722200
1250.901900
1260.383200
1270.765700
1281.099800
1291.230900
1301.045700
1310.643400
1321.044200
1330.984500
1341.070600
1351.073700
1360.388500
1370.962500
1381.048300
1390.661400
1400.906000
1410.725700
1420.888300
1430.254600
1440.824500
1450.814300
1460.965900
1470.719700
1481.137200
1490.745100
1500.972400
1510.530900
1520.816800
1530.740300
1540.808000
1551.164000
1560.523100
1571.065800
1581.191600
1590.865600
1600.839400
1610.975000
1620.614300
1631.052100
1640.889800
1650.402000
1660.633400
1670.800300
1680.973800
1690.466100
1700.877100
1710.752700
1721.166300
1730.919500
1740.701400
1750.902800
1760.895900
1770.808900
1780.631700
1790.588300
1800.901700
1811.015800
1820.893900
1830.726100
1840.814900
1850.589000
1860.728600
1870.884300
1880.791000
1890.917300
1900.954500
1911.196100
1920.870400
1930.949800
1940.982200
1950.965000
1961.317000
1970.497100
1980.655100
1991.060100
2000.994400

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "trainer_stats = trainer.train()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pCqnaKmlO1U9", + "outputId": "fb7f67f1-f97e-4cef-b87f-ac93b53950c4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2194.7755 seconds used for training.\n", + "36.58 minutes used for training.\n", + "Peak reserved memory = 10.35 GB.\n", + "Peak reserved memory for training = 3.774 GB.\n", + "Peak reserved memory % of max memory = 70.179 %.\n", + "Peak reserved memory for training % of max memory = 25.59 %.\n" + ] + } + ], + "source": [ + "#@title Show final memory and time stats\n", + "used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n", + "used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n", + "used_percentage = round(used_memory /max_memory*100, 3)\n", + "lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n", + "print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n", + "print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n", + "print(f\"Peak reserved memory = {used_memory} GB.\")\n", + "print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n", + "print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n", + "print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ekOmTR1hSNcr" + }, + "source": [ + "\n", + "### Inference\n", + "Let's run the model! You can change the instruction and input - leave the output blank!\n", + "\n", + "**[NEW] Try 2x faster inference in a free Colab for Llama-3.1 8b Instruct [here](https://colab.research.google.com/drive/1T-YBVfnphoVc8E2E854qF3jdia2Ll2W2?usp=sharing)**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "kR3gIAX-SM2q", + "outputId": "1c987413-c7c4-4c8d-a807-c3793139f58e" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nপ্যারিসের একটি বিখ্যাত লম্বা টাওয়ার কি?\\n\\n### Input:\\n\\n\\n### Response:\\nপ্যারিসের একটি বিখ্যাত লম্বা টাওয়ার হল ইয়ারা টাওয়ার। এটি প্যারিসের 16তম জেলায় অবস্থিত এবং এটি প্যারিসের সবচে']" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# alpaca_prompt = Copied from above\n", + "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "inputs = tokenizer(\n", + "[\n", + " alpaca_prompt.format(\n", + " \"প্যারিসের একটি বিখ্যাত লম্বা টাওয়ার কি?\", # instruction\n", + " \"\", # input\n", + " \"\", # output - leave this blank for generation!\n", + " )\n", + "], return_tensors = \"pt\").to(\"cuda\")\n", + "\n", + "outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n", + "tokenizer.batch_decode(outputs)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CrSvZObor0lY" + }, + "source": [ + " You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "e2pEuRb1r2Vg", + "outputId": "6a62a532-f947-4063-d9be-fe381711bfa4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", + "\n", + "### Instruction:\n", + "ক্রমাগত ফিবোনাচি সিকোয়েন্স করবেন\n", + "\n", + "### Input:\n", + "1, 1, 2, 3, 5, 8\n", + "\n", + "### Response:\n", + "ক্রমাগত ফিবোনাচি সিকোয়েন্স হল একটি সিকোয়েন্স যা প্রতিটি সংখ্যাটি এর আগের দুটি সংখ্যার যোগফলের সমান। প্রদত্ত সিকোয়েন্সে, প্রথম দুটি সংখ্যা 1 এবং 1। পরবর্তী সংখ্যাটি 1 এবং 1 এর যোগফল, যা 2। তৃতীয় সংখ্যাটি 1 এবং 2 এর যোগফল, যা \n" + ] + } + ], + "source": [ + "# alpaca_prompt = Copied from above\n", + "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "inputs = tokenizer(\n", + "[\n", + " alpaca_prompt.format(\n", + " \"ক্রমাগত ফিবোনাচি সিকোয়েন্স করবেন\", # instruction\n", + " \"1, 1, 2, 3, 5, 8\", # input\n", + " \"\", # output - leave this blank for generation!\n", + " )\n", + "], return_tensors = \"pt\").to(\"cuda\")\n", + "\n", + "from transformers import TextStreamer\n", + "text_streamer = TextStreamer(tokenizer)\n", + "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uMuVrWbjAzhc" + }, + "source": [ + "\n", + "### Saving, loading finetuned models\n", + "To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n", + "\n", + "**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "upcOlWe7A1vc" + }, + "outputs": [], + "source": [ + "# # model.save_pretrained(\"BanglaGemma9b_GGUF\") # Local saving\n", + "# # tokenizer.save_pretrained(\"BanglaGemma9b_GGUF\")\n", + "# model.push_to_hub(\"vaugheu/BanglaGemma9b_GGUF\", token = \"hf_\") # Online saving\n", + "# tokenizer.push_to_hub(\"vaugheu/BanglaGemma9b_GGUF\", token = \"hf_\") # Online saving" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AEEcJ4qfC7Lp" + }, + "source": [ + "Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MKX_XKs_BNZR", + "outputId": "77981de7-6c2c-46ea-e978-64d59285a969" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", + "\n", + "### Instruction:\n", + "প্যারিসের একটি বিখ্যাত লম্বা টাওয়ার কি?\n", + "\n", + "### Input:\n", + "\n", + "\n", + "### Response:\n", + "প্যারিসের একটি বিখ্যাত লম্বা টাওয়ার হল ইয়ারা টাওয়ার। এটি প্যারিসের 16তম জেলায় অবস্থিত এবং এটি প্যারিসের সবচেয়ে উঁচু ভবন। এটি 1973 সালে নির্মিত হয়েছিল এবং এটি 187 মিটার (614 ফুট) উঁচু।\n" + ] + } + ], + "source": [ + "if False:\n", + " from unsloth import FastLanguageModel\n", + " model, tokenizer = FastLanguageModel.from_pretrained(\n", + " model_name = \"BanglaGemma9b_GGUF\", # YOUR MODEL YOU USED FOR TRAINING\n", + " max_seq_length = max_seq_length,\n", + " dtype = dtype,\n", + " load_in_4bit = load_in_4bit,\n", + " )\n", + " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", + "\n", + "# alpaca_prompt = You MUST copy from above!\n", + "\n", + "inputs = tokenizer(\n", + "[\n", + " alpaca_prompt.format(\n", + " \"প্যারিসের একটি বিখ্যাত লম্বা টাওয়ার কি?\", # instruction\n", + " \"\", # input\n", + " \"\", # output - leave this blank for generation!\n", + " )\n", + "], return_tensors = \"pt\").to(\"cuda\")\n", + "\n", + "from transformers import TextStreamer\n", + "text_streamer = TextStreamer(tokenizer)\n", + "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QQMjaNrjsU5_" + }, + "source": [ + "You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yFfaXG0WsQuE" + }, + "outputs": [], + "source": [ + "if False:\n", + " # I highly do NOT suggest - use Unsloth if possible\n", + " from peft import AutoPeftModelForCausalLM\n", + " from transformers import AutoTokenizer\n", + " model = AutoPeftModelForCausalLM.from_pretrained(\n", + " \"BanglaGemma9b_GGUF\", # YOUR MODEL YOU USED FOR TRAINING\n", + " load_in_4bit = load_in_4bit,\n", + " )\n", + " tokenizer = AutoTokenizer.from_pretrained(\"BanglaGemma9b_GGUF\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "f422JgM9sdVT" + }, + "source": [ + "### Saving to float16 for VLLM\n", + "\n", + "We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iHjt_SMYsd3P" + }, + "outputs": [], + "source": [ + "# Merge to 16bit\n", + "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n", + "if False: model.push_to_hub_merged(\"vaugheu/BanglaGemma9b_GGUF\", tokenizer, save_method = \"merged_16bit\", token = \"\")\n", + "\n", + "# Merge to 4bit\n", + "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n", + "if False: model.push_to_hub_merged(\"vaugheu/BanglaGemma9b_GGUF\", tokenizer, save_method = \"merged_4bit\", token = \"\")\n", + "\n", + "# Just LoRA adapters\n", + "if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n", + "if False: model.push_to_hub_merged(\"vaugheu/BanglaGemma9b_GGUF\", tokenizer, save_method = \"lora\", token = \"\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TCv4vXHd61i7" + }, + "source": [ + "### GGUF / llama.cpp Conversion\n", + "To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n", + "\n", + "Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n", + "* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n", + "* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n", + "* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K.\n", + "\n", + "[**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "57125af4f34d49d0b58888ad9e21415d", + "bbf22f44362b4805a884fc3d8b2d9d17", + "65d84eea4ef64e1ab9267c5f8fc25600", + "58fdbca58f604e949f2b079dae3a33c6", + "69593167eac74b069ba9ea11b5a2df98", + "7b57b77c678c489b8fd28bf9ecf220b8", + "5bcff80df0554cac936d1cd5a12c7330", + "8100ac5e848d465b82435f46917e89b9", + "75e4ed63347846dab807a972dbbd8f4b", + "23c50152d387453cbb40d588ccdba734", + "14db196d277e48a7bde44205351d354d", + "45c4bfa78e31480d890c5ccd2d05cd73", + "67188a4a909a4ea8a48cb3919507daa7", + "1b6dfa7096fc4a13845b76a861e0fbf3", + "7a4f7546d7d846f69cea34560da96a6f", + "485ed3f8011e4fdebeeb180db45df130", + "0335fd59b20f40039e53bfafd4a9f014", + "fd276879b0c7416caffb6ca0b87f7079", + "368ddc19d093459daa15702474b7e9f3", + "6121fa09c08d40f1ac39f58900b453f8", + "369758bdc0ec4a9ba753c5164c83e4d5", + "d4dcefae7523463bb2d836869e89bd69" + ] + }, + "id": "FqfebeAdT073", + "outputId": "60525780-d801-48ca-845d-dff01a3f2c81" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Unsloth: You have 1 CPUs. Using `safe_serialization` is 10x slower.\n", + "We shall switch to Pytorch saving, which will take 3 minutes and not 30 minutes.\n", + "To force `safe_serialization`, set it to `None` instead.\n", + "Unsloth: Kaggle/Colab has limited disk space. We need to delete the downloaded\n", + "model which will save 4-16GB of disk space, allowing you to save on Kaggle/Colab.\n", + "Unsloth: Will remove a cached repo with size 6.1G\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Unsloth: Merging 4bit and LoRA weights to 16bit...\n", + "Unsloth: Will use up to 5.37 out of 12.67 RAM for saving.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 31%|███ | 13/42 [00:01<00:02, 10.60it/s]We will save to Disk and not RAM now.\n", + "100%|██████████| 42/42 [03:53<00:00, 5.57s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Unsloth: Saving tokenizer... Done.\n", + "Unsloth: Saving model... This might take 5 minutes for Llama-7b...\n", + "Unsloth: Saving model/pytorch_model-00001-of-00004.bin...\n", + "Unsloth: Saving model/pytorch_model-00002-of-00004.bin...\n", + "Unsloth: Saving model/pytorch_model-00003-of-00004.bin...\n", + "Unsloth: Saving model/pytorch_model-00004-of-00004.bin...\n", + "Done.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Unsloth: Converting gemma2 model. Can use fast conversion = False.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==((====))== Unsloth: Conversion from QLoRA to GGUF information\n", + " \\\\ /| [0] Installing llama.cpp will take 3 minutes.\n", + "O^O/ \\_/ \\ [1] Converting HF to GGUF 16bits will take 3 minutes.\n", + "\\ / [2] Converting GGUF 16bits to ['q8_0'] will take 10 minutes each.\n", + " \"-____-\" In total, you will have to wait at least 16 minutes.\n", + "\n", + "Unsloth: [0] Installing llama.cpp. This will take 3 minutes...\n", + "Unsloth: [1] Converting model at model into q8_0 GGUF format.\n", + "The output location will be /content/model/unsloth.Q8_0.gguf\n", + "This will take 3 minutes...\n", + "INFO:hf-to-gguf:Loading model: model\n", + "INFO:gguf.gguf_writer:gguf: This GGUF file is for Little Endian only\n", + "INFO:hf-to-gguf:Exporting model...\n", + "INFO:hf-to-gguf:gguf: loading model weight map from 'pytorch_model.bin.index.json'\n", + "INFO:hf-to-gguf:gguf: loading model part 'pytorch_model-00001-of-00004.bin'\n", + "INFO:hf-to-gguf:token_embd.weight, torch.float16 --> Q8_0, shape = {3584, 256000}\n", + "INFO:hf-to-gguf:blk.0.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.0.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.0.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.0.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.0.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.0.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.0.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.0.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.0.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.0.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.0.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.1.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.1.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.1.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.1.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.1.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.1.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.1.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.1.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.1.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.1.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.1.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.2.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.2.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.2.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.2.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.2.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.2.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.2.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.2.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.2.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.2.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.2.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.3.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.3.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.3.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.3.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.3.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.3.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.3.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.3.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.3.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.3.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.3.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.4.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.4.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.4.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.4.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.4.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.4.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.4.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.4.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.4.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.4.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.4.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.5.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.5.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.5.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.5.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.5.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.5.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.5.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.5.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.5.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.5.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.5.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.6.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.6.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.6.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.6.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.6.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.6.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.6.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.6.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.6.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.6.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.6.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.7.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.7.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.7.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.7.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.7.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.7.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:gguf: loading model part 'pytorch_model-00002-of-00004.bin'\n", + "INFO:hf-to-gguf:blk.7.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.7.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.7.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.7.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.7.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.8.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.8.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.8.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.8.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.8.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.8.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.8.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.8.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.8.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.8.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.8.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.9.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.9.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.9.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.9.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.9.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.9.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.9.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.9.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.9.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.9.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.9.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.10.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.10.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.10.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.10.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.10.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.10.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.10.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.10.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.10.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.10.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.10.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.11.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.11.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.11.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.11.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.11.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.11.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.11.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.11.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.11.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.11.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.11.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.12.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.12.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.12.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.12.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.12.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.12.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.12.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.12.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.12.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.12.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.12.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.13.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.13.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.13.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.13.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.13.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.13.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.13.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.13.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.13.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.13.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.13.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.14.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.14.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.14.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.14.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.14.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.14.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.14.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.14.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.14.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.14.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.14.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.15.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.15.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.15.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.15.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.15.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.15.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.15.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.15.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.15.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.15.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.15.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.16.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.16.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.16.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.16.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.16.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.16.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.16.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.16.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.16.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.16.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.16.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.17.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.17.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.17.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.17.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.17.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.17.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.17.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.17.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.17.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.17.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.17.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.18.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.18.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.18.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.18.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.18.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.18.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.18.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.18.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.18.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.18.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.18.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.19.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.19.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.19.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.19.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.19.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.19.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.19.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.19.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.19.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.19.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.19.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.20.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.20.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.20.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.20.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:gguf: loading model part 'pytorch_model-00003-of-00004.bin'\n", + "INFO:hf-to-gguf:blk.20.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.20.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.20.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.20.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.20.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.20.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.20.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.21.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.21.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.21.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.21.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.21.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.21.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.21.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.21.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.21.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.21.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.21.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.22.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.22.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.22.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.22.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.22.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.22.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.22.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.22.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.22.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.22.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.22.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.23.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.23.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.23.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.23.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.23.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.23.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.23.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.23.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.23.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.23.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.23.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.24.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.24.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.24.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.24.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.24.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.24.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.24.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.24.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.24.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.24.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.24.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.25.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.25.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.25.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.25.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.25.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.25.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.25.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.25.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.25.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.25.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.25.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.26.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.26.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.26.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.26.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.26.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.26.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.26.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.26.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.26.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.26.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.26.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.27.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.27.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.27.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.27.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.27.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.27.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.27.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.27.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.27.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.27.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.27.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.28.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.28.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.28.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.28.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.28.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.28.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.28.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.28.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.28.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.28.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.28.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.29.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.29.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.29.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.29.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.29.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.29.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.29.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.29.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.29.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.29.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.29.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.30.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.30.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.30.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.30.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.30.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.30.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.30.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.30.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.30.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.30.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.30.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.31.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.31.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.31.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.31.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.31.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.31.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.31.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.31.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.31.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.31.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.31.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.32.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.32.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.32.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.32.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.32.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.32.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:gguf: loading model part 'pytorch_model-00004-of-00004.bin'\n", + "INFO:hf-to-gguf:blk.32.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.32.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.32.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.32.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.32.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.33.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.33.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.33.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.33.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.33.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.33.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.33.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.33.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.33.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.33.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.33.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.34.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.34.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.34.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.34.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.34.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.34.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.34.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.34.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.34.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.34.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.34.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.35.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.35.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.35.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.35.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.35.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.35.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.35.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.35.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.35.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.35.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.35.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.36.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.36.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.36.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.36.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.36.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.36.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.36.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.36.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.36.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.36.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.36.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.37.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.37.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.37.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.37.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.37.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.37.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.37.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.37.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.37.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.37.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.37.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.38.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.38.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.38.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.38.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.38.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.38.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.38.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.38.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.38.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.38.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.38.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.39.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.39.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.39.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.39.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.39.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.39.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.39.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.39.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.39.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.39.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.39.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.40.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.40.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.40.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.40.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.40.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.40.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.40.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.40.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.40.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.40.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.40.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.41.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.41.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.41.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.41.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.41.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.41.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.41.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.41.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.41.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.41.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.41.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:output_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:Set meta model\n", + "INFO:hf-to-gguf:Set model parameters\n", + "INFO:hf-to-gguf:Set model tokenizer\n", + "INFO:gguf.vocab:Setting special token type bos to 2\n", + "INFO:gguf.vocab:Setting special token type eos to 1\n", + "INFO:gguf.vocab:Setting special token type unk to 3\n", + "INFO:gguf.vocab:Setting special token type pad to 0\n", + "INFO:gguf.vocab:Setting add_bos_token to True\n", + "INFO:gguf.vocab:Setting add_eos_token to False\n", + "INFO:hf-to-gguf:Set model quantization version\n", + "INFO:gguf.gguf_writer:Writing the following files:\n", + "INFO:gguf.gguf_writer:/content/model/unsloth.Q8_0.gguf: n_tensors = 464, total_size = 9.8G\n", + "Writing: 100%|██████████| 9.82G/9.82G [03:34<00:00, 45.8Mbyte/s]\n", + "INFO:hf-to-gguf:Model successfully exported to /content/model/unsloth.Q8_0.gguf\n", + "Unsloth: Conversion completed! Output location: /content/model/unsloth.Q8_0.gguf\n", + "Unsloth: Merging 4bit and LoRA weights to 16bit...\n", + "Unsloth: Will use up to 5.48 out of 12.67 RAM for saving.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 42/42 [02:17<00:00, 3.28s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Unsloth: Saving tokenizer... Done.\n", + "Unsloth: Saving model... This might take 5 minutes for Llama-7b...\n", + "Unsloth: Saving vaugheu/BanglaGemma9b_GGUF/pytorch_model-00001-of-00004.bin...\n", + "Unsloth: Saving vaugheu/BanglaGemma9b_GGUF/pytorch_model-00002-of-00004.bin...\n", + "Unsloth: Saving vaugheu/BanglaGemma9b_GGUF/pytorch_model-00003-of-00004.bin...\n", + "Unsloth: Saving vaugheu/BanglaGemma9b_GGUF/pytorch_model-00004-of-00004.bin...\n", + "Done.\n", + "==((====))== Unsloth: Conversion from QLoRA to GGUF information\n", + " \\\\ /| [0] Installing llama.cpp will take 3 minutes.\n", + "O^O/ \\_/ \\ [1] Converting HF to GGUF 16bits will take 3 minutes.\n", + "\\ / [2] Converting GGUF 16bits to ['q8_0'] will take 10 minutes each.\n", + " \"-____-\" In total, you will have to wait at least 16 minutes.\n", + "\n", + "Unsloth: [0] Installing llama.cpp. This will take 3 minutes...\n", + "Unsloth: [1] Converting model at vaugheu/BanglaGemma9b_GGUF into q8_0 GGUF format.\n", + "The output location will be /content/vaugheu/BanglaGemma9b_GGUF/unsloth.Q8_0.gguf\n", + "This will take 3 minutes...\n", + "INFO:hf-to-gguf:Loading model: BanglaGemma9b_GGUF\n", + "INFO:gguf.gguf_writer:gguf: This GGUF file is for Little Endian only\n", + "INFO:hf-to-gguf:Exporting model...\n", + "INFO:hf-to-gguf:gguf: loading model weight map from 'pytorch_model.bin.index.json'\n", + "INFO:hf-to-gguf:gguf: loading model part 'pytorch_model-00001-of-00004.bin'\n", + "INFO:hf-to-gguf:token_embd.weight, torch.float16 --> Q8_0, shape = {3584, 256000}\n", + "INFO:hf-to-gguf:blk.0.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.0.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.0.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.0.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.0.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.0.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.0.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.0.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.0.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.0.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.0.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.1.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.1.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.1.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.1.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.1.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.1.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.1.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.1.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.1.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.1.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.1.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.2.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.2.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.2.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.2.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.2.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.2.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.2.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.2.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.2.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.2.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.2.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.3.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.3.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.3.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.3.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.3.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.3.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.3.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.3.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.3.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.3.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.3.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.4.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.4.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.4.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.4.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.4.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.4.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.4.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.4.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.4.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.4.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.4.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.5.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.5.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.5.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.5.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.5.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.5.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.5.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.5.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.5.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.5.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.5.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.6.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.6.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.6.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.6.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.6.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.6.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.6.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.6.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.6.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.6.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.6.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.7.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.7.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.7.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.7.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.7.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.7.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:gguf: loading model part 'pytorch_model-00002-of-00004.bin'\n", + "INFO:hf-to-gguf:blk.7.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.7.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.7.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.7.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.7.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.8.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.8.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.8.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.8.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.8.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.8.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.8.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.8.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.8.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.8.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.8.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.9.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.9.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.9.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.9.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.9.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.9.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.9.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.9.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.9.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.9.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.9.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.10.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.10.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.10.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.10.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.10.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.10.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.10.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.10.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.10.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.10.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.10.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.11.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.11.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.11.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.11.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.11.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.11.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.11.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.11.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.11.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.11.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.11.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.12.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.12.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.12.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.12.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.12.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.12.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.12.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.12.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.12.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.12.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.12.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.13.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.13.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.13.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.13.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.13.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.13.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.13.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.13.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.13.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.13.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.13.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.14.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.14.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.14.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.14.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.14.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.14.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.14.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.14.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.14.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.14.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.14.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.15.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.15.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.15.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.15.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.15.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.15.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.15.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.15.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.15.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.15.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.15.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.16.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.16.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.16.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.16.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.16.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.16.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.16.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.16.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.16.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.16.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.16.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.17.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.17.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.17.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.17.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.17.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.17.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.17.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.17.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.17.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.17.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.17.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.18.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.18.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.18.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.18.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.18.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.18.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.18.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.18.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.18.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.18.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.18.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.19.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.19.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.19.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.19.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.19.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.19.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.19.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.19.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.19.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.19.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.19.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.20.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.20.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.20.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.20.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:gguf: loading model part 'pytorch_model-00003-of-00004.bin'\n", + "INFO:hf-to-gguf:blk.20.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.20.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.20.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.20.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.20.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.20.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.20.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.21.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.21.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.21.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.21.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.21.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.21.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.21.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.21.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.21.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.21.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.21.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.22.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.22.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.22.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.22.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.22.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.22.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.22.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.22.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.22.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.22.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.22.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.23.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.23.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.23.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.23.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.23.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.23.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.23.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.23.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.23.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.23.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.23.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.24.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.24.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.24.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.24.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.24.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.24.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.24.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.24.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.24.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.24.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.24.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.25.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.25.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.25.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.25.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.25.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.25.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.25.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.25.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.25.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.25.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.25.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.26.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.26.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.26.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.26.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.26.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.26.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.26.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.26.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.26.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.26.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.26.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.27.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.27.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.27.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.27.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.27.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.27.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.27.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.27.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.27.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.27.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.27.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.28.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.28.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.28.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.28.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.28.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.28.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.28.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.28.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.28.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.28.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.28.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.29.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.29.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.29.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.29.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.29.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.29.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.29.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.29.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.29.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.29.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.29.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.30.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.30.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.30.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.30.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.30.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.30.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.30.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.30.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.30.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.30.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.30.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.31.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.31.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.31.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.31.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.31.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.31.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.31.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.31.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.31.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.31.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.31.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.32.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.32.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.32.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.32.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.32.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.32.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:gguf: loading model part 'pytorch_model-00004-of-00004.bin'\n", + "INFO:hf-to-gguf:blk.32.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.32.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.32.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.32.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.32.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.33.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.33.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.33.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.33.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.33.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.33.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.33.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.33.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.33.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.33.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.33.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.34.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.34.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.34.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.34.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.34.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.34.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.34.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.34.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.34.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.34.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.34.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.35.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.35.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.35.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.35.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.35.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.35.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.35.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.35.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.35.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.35.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.35.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.36.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.36.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.36.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.36.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.36.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.36.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.36.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.36.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.36.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.36.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.36.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.37.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.37.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.37.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.37.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.37.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.37.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.37.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.37.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.37.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.37.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.37.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.38.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.38.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.38.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.38.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.38.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.38.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.38.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.38.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.38.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.38.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.38.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.39.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.39.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.39.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.39.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.39.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.39.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.39.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.39.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.39.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.39.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.39.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.40.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.40.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.40.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.40.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.40.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.40.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.40.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.40.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.40.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.40.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.40.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.41.attn_q.weight, torch.float16 --> Q8_0, shape = {3584, 4096}\n", + "INFO:hf-to-gguf:blk.41.attn_k.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.41.attn_v.weight, torch.float16 --> Q8_0, shape = {3584, 2048}\n", + "INFO:hf-to-gguf:blk.41.attn_output.weight, torch.float16 --> Q8_0, shape = {4096, 3584}\n", + "INFO:hf-to-gguf:blk.41.ffn_gate.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.41.ffn_up.weight, torch.float16 --> Q8_0, shape = {3584, 14336}\n", + "INFO:hf-to-gguf:blk.41.ffn_down.weight, torch.float16 --> Q8_0, shape = {14336, 3584}\n", + "INFO:hf-to-gguf:blk.41.attn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.41.post_attention_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.41.ffn_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:blk.41.post_ffw_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:output_norm.weight, torch.float16 --> F32, shape = {3584}\n", + "INFO:hf-to-gguf:Set meta model\n", + "INFO:hf-to-gguf:Set model parameters\n", + "INFO:hf-to-gguf:Set model tokenizer\n", + "INFO:gguf.vocab:Setting special token type bos to 2\n", + "INFO:gguf.vocab:Setting special token type eos to 1\n", + "INFO:gguf.vocab:Setting special token type unk to 3\n", + "INFO:gguf.vocab:Setting special token type pad to 0\n", + "INFO:gguf.vocab:Setting add_bos_token to True\n", + "INFO:gguf.vocab:Setting add_eos_token to False\n", + "INFO:hf-to-gguf:Set model quantization version\n", + "INFO:gguf.gguf_writer:Writing the following files:\n", + "INFO:gguf.gguf_writer:/content/vaugheu/BanglaGemma9b_GGUF/unsloth.Q8_0.gguf: n_tensors = 464, total_size = 9.8G\n", + "Writing: 100%|██████████| 9.82G/9.82G [03:38<00:00, 44.8Mbyte/s]\n", + "INFO:hf-to-gguf:Model successfully exported to /content/vaugheu/BanglaGemma9b_GGUF/unsloth.Q8_0.gguf\n", + "Unsloth: Conversion completed! Output location: /content/vaugheu/BanglaGemma9b_GGUF/unsloth.Q8_0.gguf\n", + "Unsloth: Uploading GGUF to Huggingface Hub...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "57125af4f34d49d0b58888ad9e21415d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1 [00:00\n", + " \n", + " \n", + " Support our work if you can! Thanks!\n", + "" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "004f3ec8f7a545c4bc54484dcb3022bb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0335fd59b20f40039e53bfafd4a9f014": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a4506749df0400480090d3127285ed6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a8ca1638fe248d0856fd4c385f9a70b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_afc36d622583404b942709b58027ffd2", + "placeholder": "​", + "style": "IPY_MODEL_8b74367efcea4a50be0c0b205dc1dd47", + "value": "Map: 100%" + } + }, + "0afe6c4f57a643159bc51aa36f099f61": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e0211c2ff4fb46aaa85bf681c004a04c", + "placeholder": "​", + "style": "IPY_MODEL_a593571b38dd4fd696e3d4778d2a9f03", + "value": " 144M/144M [00:01<00:00, 100MB/s]" + } + }, + "0bf1d81abe6f4a3493c29810857fc8dd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14db196d277e48a7bde44205351d354d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "17c55c44d870452c81d902b74c8cce79": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1949ce4af8c94c0ba7e3ac9d8df6b332": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bac3b0bec13d492b86a5c65a0bb5b96f", + "placeholder": "​", + "style": "IPY_MODEL_8adaf5cc36a3456094e077eca79c8b7e", + "value": "Map (num_proc=2): 100%" + } + }, + "1b6dfa7096fc4a13845b76a861e0fbf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_368ddc19d093459daa15702474b7e9f3", + "max": 9827148032, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6121fa09c08d40f1ac39f58900b453f8", + "value": 9827148032 + } + }, + "1ce1838f9eb34f74a615ad82cab78274": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0a4506749df0400480090d3127285ed6", + "max": 143810826, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_641f767ab42e4190bdd3d0abfe851301", + "value": 143810813 + } + }, + "1f6d972a105a46438f51566f5a24cf84": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1fa73eafabb14c73aaee39354c62477f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "20d356533da04942856986a33e7a99fb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2279b927aab74513aa1f6efb2c66c426": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "23c50152d387453cbb40d588ccdba734": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "262070892253448793aba4d048f40c08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_45d4f27475294750aff2487353c8105e", + "placeholder": "​", + "style": "IPY_MODEL_3926bab2dbad4e5fb4362ee96d6fdd67", + "value": "tokenizer.json: 100%" + } + }, + "265fecfcffb44db580c066a04b5ea37b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2b0e9c589f9848f2aeec3a97dacf2dc5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d5c3406ed7e4e03af04711751debd71": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2e6a26fb12084d5487525f5e78ab5ac8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "358035cd9f6943aeadc4cba1964109a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "368ddc19d093459daa15702474b7e9f3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "369758bdc0ec4a9ba753c5164c83e4d5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "372011973a8e46a2888bf4299b042aa0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cc0cb8826ef3428389ed6dfff6717d95", + "placeholder": "​", + "style": "IPY_MODEL_57f60ec03bf14970b020302f317ea97a", + "value": " 172026/172026 [00:16<00:00, 3697.29 examples/s]" + } + }, + "3926bab2dbad4e5fb4362ee96d6fdd67": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3cd94a9a96894e51a652076762478155": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3cdf1d5b878b41838f0ec2b4d877e97a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3e94165c4ab0471db8fb1fbd5b5bac0d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3f97e7bd5fff420c80615d676e1648f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3fddd29878ba408db098fb05db157710": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b542e0276854449d9ec4bed67279d037", + "IPY_MODEL_c3143dca63c6445fb7aa06d7d764d7a9", + "IPY_MODEL_e5c89397eb1a42bb895a4c540db2df1c" + ], + "layout": "IPY_MODEL_ae243226e393499bac22c08d2b3d9570" + } + }, + "418ece30091b4d66aca4df6367e0bec5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "45c4bfa78e31480d890c5ccd2d05cd73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_67188a4a909a4ea8a48cb3919507daa7", + "IPY_MODEL_1b6dfa7096fc4a13845b76a861e0fbf3", + "IPY_MODEL_7a4f7546d7d846f69cea34560da96a6f" + ], + "layout": "IPY_MODEL_485ed3f8011e4fdebeeb180db45df130" + } + }, + "45d4f27475294750aff2487353c8105e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4677d087bf6b40a3a4915ac7481f6e8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_673da437f86a4371b7e3913a66de835a", + "placeholder": "​", + "style": "IPY_MODEL_358035cd9f6943aeadc4cba1964109a6", + "value": "tokenizer.model: 100%" + } + }, + "485ed3f8011e4fdebeeb180db45df130": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4e40665bc93a414c87c089a3a0bb4008": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b0e9c589f9848f2aeec3a97dacf2dc5", + "placeholder": "​", + "style": "IPY_MODEL_a62221e4825a48caa9ef7f906fd43748", + "value": "train-00000-of-00002.parquet: 100%" + } + }, + "51f1e28d282645a58c8b783f4f60cfc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7ca5730f63b4420cab8b124a17aaeb27", + "IPY_MODEL_64747677b60c489ebd3e769272533b3f", + "IPY_MODEL_5c5c498bd046409c860372110e523c7c" + ], + "layout": "IPY_MODEL_ae087aee8e96402681d22d892d6cd476" + } + }, + "5455311519604e9993d537555f372a0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9439a307ffdd4705b7a1affb46d0fb71", + "placeholder": "​", + "style": "IPY_MODEL_6a62779572c6495fb2594270742b6e58", + "value": " 172026/172026 [00:15<00:00, 14572.28 examples/s]" + } + }, + "57125af4f34d49d0b58888ad9e21415d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bbf22f44362b4805a884fc3d8b2d9d17", + "IPY_MODEL_65d84eea4ef64e1ab9267c5f8fc25600", + "IPY_MODEL_58fdbca58f604e949f2b079dae3a33c6" + ], + "layout": "IPY_MODEL_69593167eac74b069ba9ea11b5a2df98" + } + }, + "57f60ec03bf14970b020302f317ea97a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "58fdbca58f604e949f2b079dae3a33c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23c50152d387453cbb40d588ccdba734", + "placeholder": "​", + "style": "IPY_MODEL_14db196d277e48a7bde44205351d354d", + "value": " 1/1 [01:26<00:00, 86.02s/it]" + } + }, + "596156e7bb7346c1808ed960997a5159": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_780d3c81c8e2461694df4d515d381d9d", + "placeholder": "​", + "style": "IPY_MODEL_f5b0174aa23e432896d0dfe37387036b", + "value": " 636/636 [00:00<00:00, 44.2kB/s]" + } + }, + "5b795861641e488fb6a47f88860a9ccd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5bcff80df0554cac936d1cd5a12c7330": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c5c498bd046409c860372110e523c7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e7f6f37bf5b6483788e50c112b7ef007", + "placeholder": "​", + "style": "IPY_MODEL_aa566decf6b4412caa2988fa623900ea", + "value": " 6.13G/6.13G [00:47<00:00, 62.0MB/s]" + } + }, + "6121fa09c08d40f1ac39f58900b453f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "62a6bc239405496ca1e451fbda8787f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7af5367620b64131a6fef8c2864d0d28", + "IPY_MODEL_d9f230d8474c40fc995c67c4f1eeb86a", + "IPY_MODEL_596156e7bb7346c1808ed960997a5159" + ], + "layout": "IPY_MODEL_418ece30091b4d66aca4df6367e0bec5" + } + }, + "63f16ab5e462454d88927b21df4427aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_68b2f241810746b7973e2b94ba4c0122", + "placeholder": "​", + "style": "IPY_MODEL_e4fd6646d36e4bce817e1e28dd99dc51", + "value": "Generating train split: 100%" + } + }, + "641f767ab42e4190bdd3d0abfe851301": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "64747677b60c489ebd3e769272533b3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e50f33072d6d454b98c6607f9e847401", + "max": 6130708044, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f97e7bd5fff420c80615d676e1648f0", + "value": 6130707460 + } + }, + "65d84eea4ef64e1ab9267c5f8fc25600": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8100ac5e848d465b82435f46917e89b9", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_75e4ed63347846dab807a972dbbd8f4b", + "value": 1 + } + }, + "67188a4a909a4ea8a48cb3919507daa7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0335fd59b20f40039e53bfafd4a9f014", + "placeholder": "​", + "style": "IPY_MODEL_fd276879b0c7416caffb6ca0b87f7079", + "value": "unsloth.Q8_0.gguf: " + } + }, + "673da437f86a4371b7e3913a66de835a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68b2f241810746b7973e2b94ba4c0122": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69593167eac74b069ba9ea11b5a2df98": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a62779572c6495fb2594270742b6e58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6db31893e3f84043b5abc6a24bac8228": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a6500ce74ca54e0ca650851502b14644", + "placeholder": "​", + "style": "IPY_MODEL_de38fc3f3df348f29528d9acd6b9d981", + "value": "tokenizer_config.json: 100%" + } + }, + "6f7ed19f4b77411c88223d59fa50d13a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71f71606c101414bae187de7f145ea43": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "723b04a16f3a402589fdb9463834f3d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "74c3cbb850e44a4c9eb8283080ba075e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "75e4ed63347846dab807a972dbbd8f4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "780d3c81c8e2461694df4d515d381d9d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7a4f7546d7d846f69cea34560da96a6f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_369758bdc0ec4a9ba753c5164c83e4d5", + "placeholder": "​", + "style": "IPY_MODEL_d4dcefae7523463bb2d836869e89bd69", + "value": " 9.84G/? [01:25<00:00, 730MB/s]" + } + }, + "7af5367620b64131a6fef8c2864d0d28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b1610596162844658f4ac1893f0fdd40", + "placeholder": "​", + "style": "IPY_MODEL_87ccf938ee7641acb94c6050bb7c4b20", + "value": "special_tokens_map.json: 100%" + } + }, + "7b57b77c678c489b8fd28bf9ecf220b8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7b64ff6c0203472391e90ce30ed4165f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f6d972a105a46438f51566f5a24cf84", + "placeholder": "​", + "style": "IPY_MODEL_7c86fc2b3b0d4708bc2e55801894e37e", + "value": " 158M/158M [00:01<00:00, 158MB/s]" + } + }, + "7c86fc2b3b0d4708bc2e55801894e37e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7ca5730f63b4420cab8b124a17aaeb27": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f340840186b4458dbff47afe987f1f59", + "placeholder": "​", + "style": "IPY_MODEL_723b04a16f3a402589fdb9463834f3d1", + "value": "model.safetensors: 100%" + } + }, + "8100ac5e848d465b82435f46917e89b9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "81b34a02e519484c965524acbe252807": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "854179dbb6854ac5bb3d7240dcc3cb0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "danger", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f9ee25b240f74c21adfa24ce54659efd", + "max": 158165675, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5b795861641e488fb6a47f88860a9ccd", + "value": 158165660 + } + }, + "871336e6e4134fb28bd3b2fa606059cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0a8ca1638fe248d0856fd4c385f9a70b", + "IPY_MODEL_93a7d487abb0476383c7e57a3da1f851", + "IPY_MODEL_372011973a8e46a2888bf4299b042aa0" + ], + "layout": "IPY_MODEL_2d5c3406ed7e4e03af04711751debd71" + } + }, + "87ccf938ee7641acb94c6050bb7c4b20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "89202b77af2a47b196cc8723c846e891": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6f7ed19f4b77411c88223d59fa50d13a", + "placeholder": "​", + "style": "IPY_MODEL_9d319b570bd64f0e9176817d577bc020", + "value": " 172026/172026 [02:35<00:00, 788.86 examples/s]" + } + }, + "8adaf5cc36a3456094e077eca79c8b7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8b74367efcea4a50be0c0b205dc1dd47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8c398b847644448e9d75135f3200f156": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_63f16ab5e462454d88927b21df4427aa", + "IPY_MODEL_afb69e965b33472a8de2739c1cdff1e9", + "IPY_MODEL_5455311519604e9993d537555f372a0b" + ], + "layout": "IPY_MODEL_a398a05038394c7b853237d751a0bbdd" + } + }, + "8e082fef631b4eeab73c02e181f5690c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "902ea19651c546de8c19414daf6a053a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4e40665bc93a414c87c089a3a0bb4008", + "IPY_MODEL_854179dbb6854ac5bb3d7240dcc3cb0b", + "IPY_MODEL_7b64ff6c0203472391e90ce30ed4165f" + ], + "layout": "IPY_MODEL_17c55c44d870452c81d902b74c8cce79" + } + }, + "90620de3bb6a467d92b92622e5dfb0c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "90762bb3d5fd4f4db67f3a8a11434689": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2e6a26fb12084d5487525f5e78ab5ac8", + "placeholder": "​", + "style": "IPY_MODEL_8e082fef631b4eeab73c02e181f5690c", + "value": " 46.4k/46.4k [00:00<00:00, 3.41MB/s]" + } + }, + "90c9301c342846729db7e3c6dfe5b849": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_edb08520684f4f83a7094599ed55cb37", + "max": 4241003, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c2185ae3f8aa4f3488e0bd7257664e26", + "value": 4241003 + } + }, + "9179bf6bb49f477b9d9e5eb2f8015aaa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "93a7d487abb0476383c7e57a3da1f851": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_97d31d1c17d248f3b2dffe59143a9797", + "max": 172026, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c7fbd851c32746d3a2a0e69b411b2121", + "value": 172026 + } + }, + "9439a307ffdd4705b7a1affb46d0fb71": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "95aa990d762d428d93cef2834fb86c8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_20d356533da04942856986a33e7a99fb", + "max": 190, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3cdf1d5b878b41838f0ec2b4d877e97a", + "value": 190 + } + }, + "97d31d1c17d248f3b2dffe59143a9797": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98cc2108542f443eb242a45fc671afef": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a6fe19da592481bbe762912bc45bbed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d319b570bd64f0e9176817d577bc020": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a2cde30a94d3462488bcb33693e3e274": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a398a05038394c7b853237d751a0bbdd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a3c7c2459ad14e9c81d7422d7e83393f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a593571b38dd4fd696e3d4778d2a9f03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a62221e4825a48caa9ef7f906fd43748": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a6500ce74ca54e0ca650851502b14644": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a80caed5f8af41ca99576d9daa68c6f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_262070892253448793aba4d048f40c08", + "IPY_MODEL_e5486d352f314f45b663a6472d6ff885", + "IPY_MODEL_f033347d7cdb4f38a3eb3e05f546e438" + ], + "layout": "IPY_MODEL_d1549b76e8ff4d69b17f9a0831b43551" + } + }, + "aa566decf6b4412caa2988fa623900ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ae087aee8e96402681d22d892d6cd476": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae243226e393499bac22c08d2b3d9570": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "afb69e965b33472a8de2739c1cdff1e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c6ede16c623b49c7b4916e5ce4799125", + "max": 172026, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a6fe19da592481bbe762912bc45bbed", + "value": 172026 + } + }, + "afc36d622583404b942709b58027ffd2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b1610596162844658f4ac1893f0fdd40": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b44759c58b284a5a950350a2cf82c4e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b542e0276854449d9ec4bed67279d037": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_265fecfcffb44db580c066a04b5ea37b", + "placeholder": "​", + "style": "IPY_MODEL_81b34a02e519484c965524acbe252807", + "value": "README.md: 100%" + } + }, + "b57e30ad94fa4b739d32c9553f5aee29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4677d087bf6b40a3a4915ac7481f6e8d", + "IPY_MODEL_90c9301c342846729db7e3c6dfe5b849", + "IPY_MODEL_c7977b2008c2476596c5351012e710b6" + ], + "layout": "IPY_MODEL_dcb2b3f1102a44429e62828b99ed39ab" + } + }, + "b90fe47ddb6240bd90ddd1705a9f3fc9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca20885d9adc4815b5418073a7930f8f", + "IPY_MODEL_95aa990d762d428d93cef2834fb86c8a", + "IPY_MODEL_c2d228de02d14c6c8f780048b1ccc088" + ], + "layout": "IPY_MODEL_c56ce88b9fab4475af5fafbc7a845010" + } + }, + "bac3b0bec13d492b86a5c65a0bb5b96f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bbf22f44362b4805a884fc3d8b2d9d17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7b57b77c678c489b8fd28bf9ecf220b8", + "placeholder": "​", + "style": "IPY_MODEL_5bcff80df0554cac936d1cd5a12c7330", + "value": "100%" + } + }, + "bf1ea3ec39db442d91f74fdcfd1c5ac3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c2185ae3f8aa4f3488e0bd7257664e26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c2d228de02d14c6c8f780048b1ccc088": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a2cde30a94d3462488bcb33693e3e274", + "placeholder": "​", + "style": "IPY_MODEL_f04ed92a356c489a9877f82b05bb330f", + "value": " 190/190 [00:00<00:00, 13.1kB/s]" + } + }, + "c3143dca63c6445fb7aa06d7d764d7a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9179bf6bb49f477b9d9e5eb2f8015aaa", + "max": 450, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d6dff4e305aa46fbaa9375133356378a", + "value": 450 + } + }, + "c56ce88b9fab4475af5fafbc7a845010": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6ede16c623b49c7b4916e5ce4799125": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c7977b2008c2476596c5351012e710b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_71f71606c101414bae187de7f145ea43", + "placeholder": "​", + "style": "IPY_MODEL_bf1ea3ec39db442d91f74fdcfd1c5ac3", + "value": " 4.24M/4.24M [00:00<00:00, 17.7MB/s]" + } + }, + "c7fbd851c32746d3a2a0e69b411b2121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ca20885d9adc4815b5418073a7930f8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e94165c4ab0471db8fb1fbd5b5bac0d", + "placeholder": "​", + "style": "IPY_MODEL_74c3cbb850e44a4c9eb8283080ba075e", + "value": "generation_config.json: 100%" + } + }, + "cc0bc8033830406a942b67c4cbbc5d28": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc0cb8826ef3428389ed6dfff6717d95": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cd98cb1f265448cf90adfd4fb3362b0d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d1462aa795714430bfee51674a619527": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d1549b76e8ff4d69b17f9a0831b43551": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d1ebb90d4a8e4656941f47d644013204": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d4dcefae7523463bb2d836869e89bd69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d6dff4e305aa46fbaa9375133356378a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d9f230d8474c40fc995c67c4f1eeb86a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d1462aa795714430bfee51674a619527", + "max": 636, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cd98cb1f265448cf90adfd4fb3362b0d", + "value": 636 + } + }, + "dcb2b3f1102a44429e62828b99ed39ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dd252c6d1d59418aa0f5b7c469351dee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1949ce4af8c94c0ba7e3ac9d8df6b332", + "IPY_MODEL_e096cf56562a4e7281681be173d51b09", + "IPY_MODEL_89202b77af2a47b196cc8723c846e891" + ], + "layout": "IPY_MODEL_3cd94a9a96894e51a652076762478155" + } + }, + "de38fc3f3df348f29528d9acd6b9d981": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e0211c2ff4fb46aaa85bf681c004a04c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e096cf56562a4e7281681be173d51b09": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_98cc2108542f443eb242a45fc671afef", + "max": 172026, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_90620de3bb6a467d92b92622e5dfb0c5", + "value": 172026 + } + }, + "e2844ec735d4420391b8ed1b9a932949": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e4fd6646d36e4bce817e1e28dd99dc51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e50f33072d6d454b98c6607f9e847401": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e5486d352f314f45b663a6472d6ff885": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e885fb98968949589006001c2f84a8eb", + "max": 17525357, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1fa73eafabb14c73aaee39354c62477f", + "value": 17525357 + } + }, + "e5c89397eb1a42bb895a4c540db2df1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2844ec735d4420391b8ed1b9a932949", + "placeholder": "​", + "style": "IPY_MODEL_d1ebb90d4a8e4656941f47d644013204", + "value": " 450/450 [00:00<00:00, 10.5kB/s]" + } + }, + "e7f6f37bf5b6483788e50c112b7ef007": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e885fb98968949589006001c2f84a8eb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "edb08520684f4f83a7094599ed55cb37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f033347d7cdb4f38a3eb3e05f546e438": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2279b927aab74513aa1f6efb2c66c426", + "placeholder": "​", + "style": "IPY_MODEL_b44759c58b284a5a950350a2cf82c4e6", + "value": " 17.5M/17.5M [00:00<00:00, 45.0MB/s]" + } + }, + "f04ed92a356c489a9877f82b05bb330f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f2f000db73f34f468b1c549c8422743a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0bf1d81abe6f4a3493c29810857fc8dd", + "placeholder": "​", + "style": "IPY_MODEL_f31165c434c7427fb4d26ea2af0feda9", + "value": "train-00001-of-00002.parquet: 100%" + } + }, + "f31165c434c7427fb4d26ea2af0feda9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f340840186b4458dbff47afe987f1f59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f5b0174aa23e432896d0dfe37387036b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f8a68ea30ebd4251931cf4d7b5be62a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f2f000db73f34f468b1c549c8422743a", + "IPY_MODEL_1ce1838f9eb34f74a615ad82cab78274", + "IPY_MODEL_0afe6c4f57a643159bc51aa36f099f61" + ], + "layout": "IPY_MODEL_cc0bc8033830406a942b67c4cbbc5d28" + } + }, + "f9ee25b240f74c21adfa24ce54659efd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fd276879b0c7416caffb6ca0b87f7079": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fd5eccb2370b40b58eea5c9f0d868e36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a3c7c2459ad14e9c81d7422d7e83393f", + "max": 46405, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_fdd24808ed23442998104b5b28370aa6", + "value": 46405 + } + }, + "fdd24808ed23442998104b5b28370aa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fe0cef5f02ca4e5e95b06356b8286fbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6db31893e3f84043b5abc6a24bac8228", + "IPY_MODEL_fd5eccb2370b40b58eea5c9f0d868e36", + "IPY_MODEL_90762bb3d5fd4f4db67f3a8a11434689" + ], + "layout": "IPY_MODEL_004f3ec8f7a545c4bc54484dcb3022bb" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}