# coding=utf-8 # Copyright Studio-Ouisa and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for LUKE.""" import collections import copy import json import os from typing import List, Optional, Tuple from transformers.models.bert_japanese.tokenization_bert_japanese import ( BasicTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SentencepieceTokenizer, SudachiTokenizer, WordpieceTokenizer, load_vocab, ) from transformers.models.luke import LukeTokenizer from transformers.tokenization_utils_base import AddedToken from transformers.utils import logging logger = logging.get_logger(__name__) EntitySpan = Tuple[int, int] EntitySpanInput = List[EntitySpan] Entity = str EntityInput = List[Entity] VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "entity_vocab_file": "entity_vocab.json"} PRETRAINED_VOCAB_FILES_MAP = {"vocab_file": {}, "entity_vocab_file": {}} PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {} class LukeBertJapaneseTokenizer(LukeTokenizer): vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, entity_vocab_file, spm_file=None, task=None, max_entity_length=32, max_mention_length=30, entity_token_1="", entity_token_2="", entity_unk_token="[UNK]", entity_pad_token="[PAD]", entity_mask_token="[MASK]", entity_mask2_token="[MASK2]", do_lower_case=False, do_word_tokenize=True, do_subword_tokenize=True, word_tokenizer_type="basic", subword_tokenizer_type="wordpiece", never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", mecab_kwargs=None, sudachi_kwargs=None, jumanpp_kwargs=None, **kwargs, ): # We call the grandparent's init, not the parent's. super(LukeTokenizer, self).__init__( spm_file=spm_file, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, do_lower_case=do_lower_case, do_word_tokenize=do_word_tokenize, do_subword_tokenize=do_subword_tokenize, word_tokenizer_type=word_tokenizer_type, subword_tokenizer_type=subword_tokenizer_type, never_split=never_split, mecab_kwargs=mecab_kwargs, sudachi_kwargs=sudachi_kwargs, jumanpp_kwargs=jumanpp_kwargs, task=task, max_entity_length=32, max_mention_length=30, entity_token_1="", entity_token_2="", entity_unk_token=entity_unk_token, entity_pad_token=entity_pad_token, entity_mask_token=entity_mask_token, entity_mask2_token=entity_mask2_token, **kwargs, ) if subword_tokenizer_type == "sentencepiece": if not os.path.isfile(spm_file): raise ValueError( f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google" " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.spm_file = spm_file else: if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google" " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_word_tokenize = do_word_tokenize self.word_tokenizer_type = word_tokenizer_type self.lower_case = do_lower_case self.never_split = never_split self.mecab_kwargs = copy.deepcopy(mecab_kwargs) self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs) self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs) if do_word_tokenize: if word_tokenizer_type == "basic": self.word_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False ) elif word_tokenizer_type == "mecab": self.word_tokenizer = MecabTokenizer( do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {}) ) elif word_tokenizer_type == "sudachi": self.word_tokenizer = SudachiTokenizer( do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {}) ) elif word_tokenizer_type == "jumanpp": self.word_tokenizer = JumanppTokenizer( do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {}) ) else: raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.") self.do_subword_tokenize = do_subword_tokenize self.subword_tokenizer_type = subword_tokenizer_type if do_subword_tokenize: if subword_tokenizer_type == "wordpiece": self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) elif subword_tokenizer_type == "character": self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=self.unk_token) elif subword_tokenizer_type == "sentencepiece": self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=self.unk_token) else: raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.") # we add 2 special tokens for downstream tasks # for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778 entity_token_1 = ( AddedToken(entity_token_1, lstrip=False, rstrip=False) if isinstance(entity_token_1, str) else entity_token_1 ) entity_token_2 = ( AddedToken(entity_token_2, lstrip=False, rstrip=False) if isinstance(entity_token_2, str) else entity_token_2 ) kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) kwargs["additional_special_tokens"] += [entity_token_1, entity_token_2] with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle: self.entity_vocab = json.load(entity_vocab_handle) for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]: if entity_special_token not in self.entity_vocab: raise ValueError( f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. " f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}." ) self.entity_unk_token_id = self.entity_vocab[entity_unk_token] self.entity_pad_token_id = self.entity_vocab[entity_pad_token] self.entity_mask_token_id = self.entity_vocab[entity_mask_token] self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token] self.task = task if task is None or task == "entity_span_classification": self.max_entity_length = max_entity_length elif task == "entity_classification": self.max_entity_length = 1 elif task == "entity_pair_classification": self.max_entity_length = 2 else: raise ValueError( f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification'," " 'entity_span_classification'] only." ) self.max_mention_length = max_mention_length @property # Copied from BertJapaneseTokenizer def do_lower_case(self): return self.lower_case # Copied from BertJapaneseTokenizer def __getstate__(self): state = dict(self.__dict__) if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]: del state["word_tokenizer"] return state # Copied from BertJapaneseTokenizer def __setstate__(self, state): self.__dict__ = state if self.word_tokenizer_type == "mecab": self.word_tokenizer = MecabTokenizer( do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {}) ) elif self.word_tokenizer_type == "sudachi": self.word_tokenizer = SudachiTokenizer( do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {}) ) elif self.word_tokenizer_type == "jumanpp": self.word_tokenizer = JumanppTokenizer( do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {}) ) # Copied from BertJapaneseTokenizer def _tokenize(self, text): if self.do_word_tokenize: tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens) else: tokens = [text] if self.do_subword_tokenize: split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)] else: split_tokens = tokens return split_tokens @property # Copied from BertJapaneseTokenizer def vocab_size(self): if self.subword_tokenizer_type == "sentencepiece": return len(self.subword_tokenizer.sp_model) return len(self.vocab) # Copied from BertJapaneseTokenizer def get_vocab(self): if self.subword_tokenizer_type == "sentencepiece": vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab return dict(self.vocab, **self.added_tokens_encoder) # Copied from BertJapaneseTokenizer def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if self.subword_tokenizer_type == "sentencepiece": return self.subword_tokenizer.sp_model.PieceToId(token) return self.vocab.get(token, self.vocab.get(self.unk_token)) # Copied from BertJapaneseTokenizer def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if self.subword_tokenizer_type == "sentencepiece": return self.subword_tokenizer.sp_model.IdToPiece(index) return self.ids_to_tokens.get(index, self.unk_token) # Copied from BertJapaneseTokenizer def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" if self.subword_tokenizer_type == "sentencepiece": return self.subword_tokenizer.sp_model.decode(tokens) out_string = " ".join(tokens).replace(" ##", "").strip() return out_string # Copied from BertJapaneseTokenizer def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep # Copied from BertJapaneseTokenizer def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from BertJapaneseTokenizer def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): return (text, kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if os.path.isdir(save_directory): if self.subword_tokenizer_type == "sentencepiece": vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"] ) else: vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"], ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory if self.subword_tokenizer_type == "sentencepiece": with open(vocab_file, "wb") as writer: content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto() writer.write(content_spiece_model) else: with open(vocab_file, "w", encoding="utf-8") as writer: index = 0 for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 entity_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"] ) with open(entity_vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return vocab_file, entity_vocab_file