File size: 17,917 Bytes
4117b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# coding=utf-8
# Copyright Studio-Ouisa and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for LUKE."""
import collections
import copy
import json
import os
from typing import List, Optional, Tuple
from transformers.models.bert_japanese.tokenization_bert_japanese import (
BasicTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SentencepieceTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
load_vocab,
)
from transformers.models.luke import LukeTokenizer
from transformers.tokenization_utils_base import AddedToken
from transformers.utils import logging
logger = logging.get_logger(__name__)
EntitySpan = Tuple[int, int]
EntitySpanInput = List[EntitySpan]
Entity = str
EntityInput = List[Entity]
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "entity_vocab_file": "entity_vocab.json"}
PRETRAINED_VOCAB_FILES_MAP = {"vocab_file": {}, "entity_vocab_file": {}}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
class LukeBertJapaneseTokenizer(LukeTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
entity_vocab_file,
spm_file=None,
task=None,
max_entity_length=32,
max_mention_length=30,
entity_token_1="<ent>",
entity_token_2="<ent2>",
entity_unk_token="[UNK]",
entity_pad_token="[PAD]",
entity_mask_token="[MASK]",
entity_mask2_token="[MASK2]",
do_lower_case=False,
do_word_tokenize=True,
do_subword_tokenize=True,
word_tokenizer_type="basic",
subword_tokenizer_type="wordpiece",
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
mecab_kwargs=None,
sudachi_kwargs=None,
jumanpp_kwargs=None,
**kwargs,
):
# We call the grandparent's init, not the parent's.
super(LukeTokenizer, self).__init__(
spm_file=spm_file,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
do_lower_case=do_lower_case,
do_word_tokenize=do_word_tokenize,
do_subword_tokenize=do_subword_tokenize,
word_tokenizer_type=word_tokenizer_type,
subword_tokenizer_type=subword_tokenizer_type,
never_split=never_split,
mecab_kwargs=mecab_kwargs,
sudachi_kwargs=sudachi_kwargs,
jumanpp_kwargs=jumanpp_kwargs,
task=task,
max_entity_length=32,
max_mention_length=30,
entity_token_1="<ent>",
entity_token_2="<ent2>",
entity_unk_token=entity_unk_token,
entity_pad_token=entity_pad_token,
entity_mask_token=entity_mask_token,
entity_mask2_token=entity_mask2_token,
**kwargs,
)
if subword_tokenizer_type == "sentencepiece":
if not os.path.isfile(spm_file):
raise ValueError(
f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google"
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.spm_file = spm_file
else:
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google"
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_word_tokenize = do_word_tokenize
self.word_tokenizer_type = word_tokenizer_type
self.lower_case = do_lower_case
self.never_split = never_split
self.mecab_kwargs = copy.deepcopy(mecab_kwargs)
self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs)
self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs)
if do_word_tokenize:
if word_tokenizer_type == "basic":
self.word_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False
)
elif word_tokenizer_type == "mecab":
self.word_tokenizer = MecabTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {})
)
elif word_tokenizer_type == "sudachi":
self.word_tokenizer = SudachiTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {})
)
elif word_tokenizer_type == "jumanpp":
self.word_tokenizer = JumanppTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {})
)
else:
raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.")
self.do_subword_tokenize = do_subword_tokenize
self.subword_tokenizer_type = subword_tokenizer_type
if do_subword_tokenize:
if subword_tokenizer_type == "wordpiece":
self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
elif subword_tokenizer_type == "character":
self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=self.unk_token)
elif subword_tokenizer_type == "sentencepiece":
self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=self.unk_token)
else:
raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.")
# we add 2 special tokens for downstream tasks
# for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778
entity_token_1 = (
AddedToken(entity_token_1, lstrip=False, rstrip=False)
if isinstance(entity_token_1, str)
else entity_token_1
)
entity_token_2 = (
AddedToken(entity_token_2, lstrip=False, rstrip=False)
if isinstance(entity_token_2, str)
else entity_token_2
)
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", [])
kwargs["additional_special_tokens"] += [entity_token_1, entity_token_2]
with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle:
self.entity_vocab = json.load(entity_vocab_handle)
for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]:
if entity_special_token not in self.entity_vocab:
raise ValueError(
f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. "
f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}."
)
self.entity_unk_token_id = self.entity_vocab[entity_unk_token]
self.entity_pad_token_id = self.entity_vocab[entity_pad_token]
self.entity_mask_token_id = self.entity_vocab[entity_mask_token]
self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token]
self.task = task
if task is None or task == "entity_span_classification":
self.max_entity_length = max_entity_length
elif task == "entity_classification":
self.max_entity_length = 1
elif task == "entity_pair_classification":
self.max_entity_length = 2
else:
raise ValueError(
f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification',"
" 'entity_span_classification'] only."
)
self.max_mention_length = max_mention_length
@property
# Copied from BertJapaneseTokenizer
def do_lower_case(self):
return self.lower_case
# Copied from BertJapaneseTokenizer
def __getstate__(self):
state = dict(self.__dict__)
if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]:
del state["word_tokenizer"]
return state
# Copied from BertJapaneseTokenizer
def __setstate__(self, state):
self.__dict__ = state
if self.word_tokenizer_type == "mecab":
self.word_tokenizer = MecabTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {})
)
elif self.word_tokenizer_type == "sudachi":
self.word_tokenizer = SudachiTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {})
)
elif self.word_tokenizer_type == "jumanpp":
self.word_tokenizer = JumanppTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {})
)
# Copied from BertJapaneseTokenizer
def _tokenize(self, text):
if self.do_word_tokenize:
tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
else:
tokens = [text]
if self.do_subword_tokenize:
split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)]
else:
split_tokens = tokens
return split_tokens
@property
# Copied from BertJapaneseTokenizer
def vocab_size(self):
if self.subword_tokenizer_type == "sentencepiece":
return len(self.subword_tokenizer.sp_model)
return len(self.vocab)
# Copied from BertJapaneseTokenizer
def get_vocab(self):
if self.subword_tokenizer_type == "sentencepiece":
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
return dict(self.vocab, **self.added_tokens_encoder)
# Copied from BertJapaneseTokenizer
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.PieceToId(token)
return self.vocab.get(token, self.vocab.get(self.unk_token))
# Copied from BertJapaneseTokenizer
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.IdToPiece(index)
return self.ids_to_tokens.get(index, self.unk_token)
# Copied from BertJapaneseTokenizer
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.decode(tokens)
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
# Copied from BertJapaneseTokenizer
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from BertJapaneseTokenizer
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
# Copied from BertJapaneseTokenizer
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
return (text, kwargs)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
if self.subword_tokenizer_type == "sentencepiece":
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"]
)
else:
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
if self.subword_tokenizer_type == "sentencepiece":
with open(vocab_file, "wb") as writer:
content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto()
writer.write(content_spiece_model)
else:
with open(vocab_file, "w", encoding="utf-8") as writer:
index = 0
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
entity_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"]
)
with open(entity_vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return vocab_file, entity_vocab_file
|