File size: 3,971 Bytes
c423f8a
f431c04
 
 
 
 
 
 
 
 
 
 
 
 
c423f8a
f431c04
 
 
 
 
 
 
 
 
 
 
f7b1f87
f431c04
c423f8a
f431c04
 
 
4b4fac3
 
 
 
10f9658
4b4fac3
8b504ca
f431c04
 
 
 
 
 
 
 
 
0a1f7a5
 
 
 
 
 
 
 
 
 
 
 
 
f7b1f87
f431c04
 
 
f7b1f87
f431c04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7b1f87
 
 
f431c04
 
 
389b885
 
 
 
 
f431c04
 
f7b1f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
062f977
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
datasets:
- jondurbin/airoboros-2.2
- Open-Orca/OpenOrca
- garage-bAInd/Open-Platypus
- WizardLM/WizardLM_evol_instruct_V2_196k
- TokenBender/python_eval_instruct_51k
tags:
- llama-2
- code
license: llama2
model-index:
- name: SpeechlessCoder
  results:
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 51.829
      verified: false
---

<p><h1> speechless-tora-code-7b-v1.0  </h1></p>

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-tora-code-7B-v1.0-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-tora-code-7B-v1.0-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-tora-code-7B-v1.0-GGUF)

Code: https://github.com/uukuguy/speechless

Use the following dataset to fine-tune llm_agents/tora-code-7b-v1.0 in order to improve the model's reasoning and planning abilities.

Total 201,981 samples.
- jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
- Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
- garage-bAInd/Open-Platypus: 100%, 24,926 samples.
- WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
- TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples
- Spider: 8,659 samples

## How to Prompt the Model
This model accepts the Alpaca instruction format.

For example:
```
You are an intelligent programming assistant.

### Instruction:
Implement a linked list in C++

### Response:
```

## HumanEval

| Metric | Value |
| --- | --- |
| humaneval-python | 51.829 |

[Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)

CodeLlama-34B-Python: 53.29

CodeLlama-34B-Instruct: 50.79

CodeLlama-13B-Instruct: 50.6

CodeLlama-34B: 45.11

CodeLlama-13B-Python: 42.89

CodeLlama-13B: 35.07


## LM-Evaluation-Harness

[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
| Metric | Value |
| --- | --- |
| ARC | 42.66 |
| HellaSwag | 65.16 |
| MMLU | 38.56 |
| TruthfulQA | 42.06 |
| Average | 47.11 |


## Parameters

| | |
|------ | ------ |
| lr | 2e-4 |
| lr_scheduler_type | cosine |
| weight_decay | 0.0 |
| optim | paged_adamw_8bit |
| flash_attention | True |
| rerope | False |
| max_new_tokens | 4096 |
| num_train_epochs | 2 |
| bits | 4 |
| lora_r | 64 |
| lora_alpha | 16 |
| lora_dropout | 0.05 |
| double_quant | True |
| quant_type | nf4 |
| dataset_format | airoboros |
| mini_batch_size | 2 |
| grandient_accumulation_steps | 32 |
| bf16 | True |

A800-80G x 2

| | |
|------ | ------ |
| epoch                    |                2.0 |
| etrain_loss               |             0.5891 |
| etrain_runtime            | 19:24:49.43 |
| etrain_samples_per_second |              5.664 |
| etrain_steps_per_second   |              0.044 |
| eeval_loss               |     0.5872 |
| eeval_runtime            | 0:00:15.59 |
| eeval_samples_per_second |      12.822 |
| eeval_steps_per_second   |      6.411 |


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__speechless-tora-code-7b-v1.0)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 40.1   |
| ARC (25-shot)         | 42.66          |
| HellaSwag (10-shot)   | 65.16    |
| MMLU (5-shot)         | 38.56         |
| TruthfulQA (0-shot)   | 42.06   |
| Winogrande (5-shot)   | 62.9   |
| GSM8K (5-shot)        | 0.91        |
| DROP (3-shot)         | 28.48         |