uukuguy commited on
Commit
e637445
·
1 Parent(s): b5bed77
.gitattributes ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ pytorch_model-00001-of-00002.bin filter=lfs diff=lfs merge=lfs -text
37
+ pytorch_model-00002-of-00002.bin filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ pipeline_tag: text-generation
4
+ tags:
5
+ - orca
6
+ - orca2
7
+ - microsoft
8
+ ---
9
+
10
+ Save [Orca-2-7b](https://huggingface.co/microsoft/Orca-2-7b) in f16 for local test.
11
+
12
+
13
+ # Orca 2
14
+
15
+ <!-- Provide a quick summary of what the model is/does. -->
16
+
17
+ Orca 2 is a helpful assistant that is built for research purposes only and provides a single turn response
18
+ in tasks such as reasoning over user given data, reading comprehension, math problem solving and text summarization.
19
+ The model is designed to excel particularly in reasoning.
20
+
21
+ We open-source Orca 2 to encourage further research on the development, evaluation, and alignment of smaller LMs.
22
+
23
+ ## What is Orca 2’s intended use(s)?
24
+
25
+ + Orca 2 is built for research purposes only.
26
+ + The main purpose is to allow the research community to assess its abilities and to provide a foundation for building better frontier models.
27
+
28
+ ## How was Orca 2 evaluated?
29
+
30
+ + Orca 2 has been evaluated on a large number of tasks ranging from reasoning to grounding and safety. Please refer
31
+ to Section 6 and Appendix in the [Orca 2 paper](https://arxiv.org/pdf/2311.11045.pdf) for details on evaluations.
32
+
33
+ ## Model Details
34
+
35
+ Orca 2 is a finetuned version of LLAMA-2. Orca 2’s training data is a synthetic dataset that was created to enhance the small model’s reasoning abilities.
36
+ All synthetic training data was moderated using the Microsoft Azure content filters. More details about the model can be found in the [Orca 2 paper](https://arxiv.org/pdf/2311.11045.pdf).
37
+
38
+ Please refer to LLaMA-2 technical report for details on the model architecture.
39
+
40
+ ## License
41
+
42
+ Orca 2 is licensed under the [Microsoft Research License](LICENSE).
43
+
44
+ Llama 2 is licensed under the [LLAMA 2 Community License](https://ai.meta.com/llama/license/), Copyright © Meta Platforms, Inc. All Rights Reserved.
45
+
46
+ ## Bias, Risks, and Limitations
47
+
48
+ Orca 2, built upon the LLaMA 2 model family, retains many of its limitations, as well as the
49
+ common limitations of other large language models or limitation caused by its training
50
+ process, including:
51
+
52
+ **Data Biases**: Large language models, trained on extensive data, can inadvertently carry
53
+ biases present in the source data. Consequently, the models may generate outputs that could
54
+ be potentially biased or unfair.
55
+
56
+ **Lack of Contextual Understanding**: Despite their impressive capabilities in language understanding and generation, these models exhibit limited real-world understanding, resulting
57
+ in potential inaccuracies or nonsensical responses.
58
+
59
+ **Lack of Transparency**: Due to the complexity and size, large language models can act
60
+ as “black boxes”, making it difficult to comprehend the rationale behind specific outputs or
61
+ decisions. We recommend reviewing transparency notes from Azure for more information.
62
+
63
+ **Content Harms**: There are various types of content harms that large language models
64
+ can cause. It is important to be aware of them when using these models, and to take
65
+ actions to prevent them. It is recommended to leverage various content moderation services
66
+ provided by different companies and institutions. On an important note, we hope for better
67
+ regulations and standards from government and technology leaders around content harms
68
+ for AI technologies in future. We value and acknowledge the important role that research
69
+ and open source community can play in this direction.
70
+
71
+ **Hallucination**: It is important to be aware and cautious not to entirely rely on a given
72
+ language model for critical decisions or information that might have deep impact as it is
73
+ not obvious how to prevent these models from fabricating content. Moreover, it is not clear
74
+ whether small models may be more susceptible to hallucination in ungrounded generation
75
+ use cases due to their smaller sizes and hence reduced memorization capacities. This is an
76
+ active research topic and we hope there will be more rigorous measurement, understanding
77
+ and mitigations around this topic.
78
+
79
+ **Potential for Misuse**: Without suitable safeguards, there is a risk that these models could
80
+ be maliciously used for generating disinformation or harmful content.
81
+
82
+ **Data Distribution**: Orca 2’s performance is likely to correlate strongly with the distribution
83
+ of the tuning data. This correlation might limit its accuracy in areas underrepresented in
84
+ the training dataset such as math, coding, and reasoning.
85
+
86
+ **System messages**: Orca 2 demonstrates variance in performance depending on the system
87
+ instructions. Additionally, the stochasticity introduced by the model size may lead to
88
+ generation of non-deterministic responses to different system instructions.
89
+
90
+ **Zero-Shot Settings**: Orca 2 was trained on data that mostly simulate zero-shot settings.
91
+ While the model demonstrate very strong performance in zero-shot settings, it does not show
92
+ the same gains of using few-shot learning compared to other, specially larger, models.
93
+
94
+ **Synthetic data**: As Orca 2 is trained on synthetic data, it could inherit both the advantages
95
+ and shortcomings of the models and methods used for data generation. We posit that Orca
96
+ 2 benefits from the safety measures incorporated during training and safety guardrails (e.g.,
97
+ content filter) within the Azure OpenAI API. However, detailed studies are required for
98
+ better quantification of such risks.
99
+
100
+ This model is solely designed for research settings, and its testing has only been carried
101
+ out in such environments. It should not be used in downstream applications, as additional
102
+ analysis is needed to assess potential harm or bias in the proposed application.
103
+
104
+ ## Getting started with Orca 2
105
+
106
+ **Inference with Hugging Face library**
107
+
108
+ ```python
109
+ import torch
110
+ import transformers
111
+
112
+ if torch.cuda.is_available():
113
+ torch.set_default_device("cuda")
114
+ else:
115
+ torch.set_default_device("cpu")
116
+
117
+ model = transformers.AutoModelForCausalLM.from_pretrained("microsoft/Orca-2-7b", device_map='auto')
118
+
119
+ # https://github.com/huggingface/transformers/issues/27132
120
+ # please use the slow tokenizer since fast and slow tokenizer produces different tokens
121
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
122
+ "microsoft/Orca-2-7b",
123
+ use_fast=False,
124
+ )
125
+
126
+ system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
127
+ user_message = "How can you determine if a restaurant is popular among locals or mainly attracts tourists, and why might this information be useful?"
128
+
129
+ prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
130
+
131
+ inputs = tokenizer(prompt, return_tensors='pt')
132
+ output_ids = model.generate(inputs["input_ids"],)
133
+ answer = tokenizer.batch_decode(output_ids)[0]
134
+
135
+ print(answer)
136
+
137
+ # This example continues showing how to add a second turn message by the user to the conversation
138
+ second_turn_user_message = "Give me a list of the key points of your first answer."
139
+
140
+ # we set add_special_tokens=False because we dont want to automatically add a bos_token between messages
141
+ second_turn_message_in_markup = f"\n<|im_start|>user\n{second_turn_user_message}<|im_end|>\n<|im_start|>assistant"
142
+ second_turn_tokens = tokenizer(second_turn_message_in_markup, return_tensors='pt', add_special_tokens=False)
143
+ second_turn_input = torch.cat([output_ids, second_turn_tokens['input_ids']], dim=1)
144
+
145
+ output_ids_2 = model.generate(second_turn_input,)
146
+ second_turn_answer = tokenizer.batch_decode(output_ids_2)[0]
147
+
148
+ print(second_turn_answer)
149
+ ```
150
+
151
+
152
+ **Safe inference with Azure AI Content Safety**
153
+
154
+ The usage of [Azure AI Content Safety](https://azure.microsoft.com/en-us/products/ai-services/ai-content-safety/) on top of model prediction is strongly encouraged
155
+ and can help preventing some of content harms. Azure AI Content Safety is a content moderation platform
156
+ that uses AI to moderate content. By having Azure AI Content Safety on the output of Orca 2,
157
+ the model output can be moderated by scanning it for different harm categories including sexual content, violence, hate, and
158
+ self-harm with multiple severity levels and multi-lingual detection.
159
+
160
+ ```python
161
+ import os
162
+ import math
163
+ import transformers
164
+ import torch
165
+
166
+ from azure.ai.contentsafety import ContentSafetyClient
167
+ from azure.core.credentials import AzureKeyCredential
168
+ from azure.core.exceptions import HttpResponseError
169
+ from azure.ai.contentsafety.models import AnalyzeTextOptions
170
+
171
+ CONTENT_SAFETY_KEY = os.environ["CONTENT_SAFETY_KEY"]
172
+ CONTENT_SAFETY_ENDPOINT = os.environ["CONTENT_SAFETY_ENDPOINT"]
173
+
174
+ # We use Azure AI Content Safety to filter out any content that reaches "Medium" threshold
175
+ # For more information: https://learn.microsoft.com/en-us/azure/ai-services/content-safety/
176
+ def should_filter_out(input_text, threshold=4):
177
+ # Create an Content Safety client
178
+ client = ContentSafetyClient(CONTENT_SAFETY_ENDPOINT, AzureKeyCredential(CONTENT_SAFETY_KEY))
179
+
180
+ # Construct a request
181
+ request = AnalyzeTextOptions(text=input_text)
182
+
183
+ # Analyze text
184
+ try:
185
+ response = client.analyze_text(request)
186
+ except HttpResponseError as e:
187
+ print("Analyze text failed.")
188
+ if e.error:
189
+ print(f"Error code: {e.error.code}")
190
+ print(f"Error message: {e.error.message}")
191
+ raise
192
+ print(e)
193
+ raise
194
+
195
+ categories = ["hate_result", "self_harm_result", "sexual_result", "violence_result"]
196
+ max_score = -math.inf
197
+ for category in categories:
198
+ max_score = max(max_score, getattr(response, category).severity)
199
+
200
+ return max_score >= threshold
201
+
202
+ model_path = 'microsoft/Orca-2-7b'
203
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
204
+ model = transformers.AutoModelForCausalLM.from_pretrained(model_path)
205
+ model.to(device)
206
+
207
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
208
+ model_path,
209
+ model_max_length=4096,
210
+ padding_side="right",
211
+ use_fast=False,
212
+ add_special_tokens=False,
213
+ )
214
+
215
+ system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
216
+ user_message = "\" \n :You can't just say, \"\"that's crap\"\" and remove it without gaining a consensus. You already know this, based on your block history. —/ \" \nIs the comment obscene? \nOptions : Yes, No."
217
+
218
+ prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"
219
+
220
+ inputs = tokenizer(prompt, return_tensors='pt')
221
+ inputs = inputs.to(device)
222
+
223
+ output_ids = model.generate(inputs["input_ids"], max_length=4096, do_sample=False, temperature=0.0, use_cache=True)
224
+ sequence_length = inputs["input_ids"].shape[1]
225
+ new_output_ids = output_ids[:, sequence_length:]
226
+ answers = tokenizer.batch_decode(new_output_ids, skip_special_tokens=True)
227
+ final_output = answers[0] if not should_filter_out(answers[0]) else "[Content Filtered]"
228
+
229
+ print(final_output)
230
+ ```
231
+
232
+ ## Citation
233
+ ```bibtex
234
+ @misc{mitra2023orca,
235
+ title={Orca 2: Teaching Small Language Models How to Reason},
236
+ author={Arindam Mitra and Luciano Del Corro and Shweti Mahajan and Andres Codas and Clarisse Simoes and Sahaj Agrawal and Xuxi Chen and Anastasia Razdaibiedina and Erik Jones and Kriti Aggarwal and Hamid Palangi and Guoqing Zheng and Corby Rosset and Hamed Khanpour and Ahmed Awadallah},
237
+ year={2023},
238
+ eprint={2311.11045},
239
+ archivePrefix={arXiv},
240
+ primaryClass={cs.AI}
241
+ }
242
+ ```
added_tokens.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 2,
3
+ "<s>": 1,
4
+ "<unk>": 0,
5
+ "<|im_end|>": 32002,
6
+ "<|im_start|>": 32001,
7
+ "[PAD]": 32000
8
+ }
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/opt/local/llm_models/huggingface.co/microsoft/Orca-2-7b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pretraining_tp": 1,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000.0,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.34.0",
25
+ "use_cache": true,
26
+ "vocab_size": 32003
27
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 4096,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.34.0"
7
+ }
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f963217d4473cbe40473f3320cd9faf4f4b13d973ed6271a7e5a248dadb65f29
3
+ size 9976644698
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e957a7ffe3b58900c87a96e09339e457d575788c01e9930d6ed584a09c56490
3
+ size 3500335363
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476880384
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "[PAD]",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[PAD]",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<|im_start|>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "32002": {
46
+ "content": "<|im_end|>",
47
+ "lstrip": false,
48
+ "normalized": true,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ }
53
+ },
54
+ "additional_special_tokens": [],
55
+ "bos_token": "<s>",
56
+ "clean_up_tokenization_spaces": false,
57
+ "eos_token": "</s>",
58
+ "legacy": false,
59
+ "model_max_length": 4096,
60
+ "pad_token": "[PAD]",
61
+ "padding_side": "right",
62
+ "sp_model_kwargs": {},
63
+ "spaces_between_special_tokens": false,
64
+ "tokenizer_class": "LlamaTokenizer",
65
+ "unk_token": "<unk>",
66
+ "use_default_system_prompt": true
67
+ }