Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,118 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
-
###
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- de
|
6 |
+
- es
|
7 |
+
- fr
|
8 |
+
- it
|
9 |
+
- pt
|
10 |
+
- pl
|
11 |
+
- nl
|
12 |
+
- tr
|
13 |
+
- sv
|
14 |
+
- cs
|
15 |
+
- el
|
16 |
+
- hu
|
17 |
+
- ro
|
18 |
+
- fi
|
19 |
+
- uk
|
20 |
+
- sl
|
21 |
+
- sk
|
22 |
+
- da
|
23 |
+
- lt
|
24 |
+
- lv
|
25 |
+
- et
|
26 |
+
- bg
|
27 |
+
- 'no'
|
28 |
+
- ca
|
29 |
+
- hr
|
30 |
+
- ga
|
31 |
+
- mt
|
32 |
+
- gl
|
33 |
+
- zh
|
34 |
+
- ru
|
35 |
+
- ko
|
36 |
+
- ja
|
37 |
+
- ar
|
38 |
+
- hi
|
39 |
library_name: transformers
|
40 |
+
base_model:
|
41 |
+
- utter-project/EuroMoE-2.6B-A0.6B-Preview
|
42 |
---
|
43 |
|
44 |
+
# Model Card for EuroMoE-2.6B-A0.6B-Instruct-Preview
|
45 |
|
46 |
+
⚠️ PREVIEW RELEASE: This is a preview version of EuroMoE-2.6B-A0.6B-Instruct-Preview. The model is still under development and may have limitations in performance and stability. Use with caution in production environments.
|
47 |
|
48 |
+
This is the model card for EuroMoE-2.6B-A0.6B-Instruct-Preview. You can also check the pre-trained version: [EuroMoE-2.6B-A0.6B-Preview](https://huggingface.co/utter-project/EuroMoE-2.6B-A0.6B-Preview).
|
49 |
|
50 |
+
- **Developed by:** Unbabel, Instituto Superior Técnico, Instituto de Telecomunicações, University of Edinburgh, Aveni, University of Paris-Saclay, University of Amsterdam, Naver Labs, Sorbonne Université.
|
51 |
+
- **Funded by:** European Union.
|
52 |
+
- **Model type:** A 2.6B parameter multilingual transformer MoE with 0.6B active parameters.
|
53 |
+
- **Language(s) (NLP):** Bulgarian, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish, Arabic, Catalan, Chinese, Galician, Hindi, Japanese, Korean, Norwegian, Russian, Turkish, and Ukrainian.
|
54 |
+
- **License:** Apache License 2.0.
|
55 |
|
56 |
## Model Details
|
57 |
|
58 |
+
The EuroLLM project has the goal of creating a suite of LLMs capable of understanding and generating text in all European Union languages as well as some additional relevant languages.
|
59 |
+
EuroMoE-2.6B-A0.6B is a 22B parameter model trained on 8 trillion tokens divided across the considered languages and several data sources: Web data, parallel data (en-xx and xx-en), and high-quality datasets.
|
60 |
+
EuroMoE-2.6B-A0.6B-Instruct was further instruction tuned on EuroBlocks, an instruction tuning dataset with focus on general instruction-following and machine translation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
62 |
|
63 |
+
### Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
EuroMoE uses a standard MoE Transformer architecture:
|
66 |
+
- We use grouped query attention (GQA) with 2 key-value heads, since it has been shown to increase speed at inference time while maintaining downstream performance.
|
67 |
+
- We perform pre-layer normalization, since it improves the training stability, and use the RMSNorm, which is faster.
|
68 |
+
- We use the SwiGLU activation function, since it has been shown to lead to good results on downstream tasks.
|
69 |
+
- We use rotary positional embeddings (RoPE) in every layer, since these have been shown to lead to good performances while allowing the extension of the context length.
|
70 |
+
|
71 |
+
For pre-training, we use 512 Nvidia A100 GPUs of the Leonardo supercomputer, training the model with a constant batch size of 4096 sequences, which corresponds to approximately 17 million tokens, using the Adam optimizer, and BF16 precision.
|
72 |
+
Here is a summary of the model hyper-parameters:
|
73 |
+
| | |
|
74 |
+
|--------------------------------------|----------------------|
|
75 |
+
| Sequence Length | 4,096 |
|
76 |
+
| Number of Layers | 24 |
|
77 |
+
| Embedding Size | 1,024 |
|
78 |
+
| Total/Active experts | 64/8 |
|
79 |
+
| Expert Hidden Size | 512 |
|
80 |
+
| Number of Heads | 8 |
|
81 |
+
| Number of KV Heads (GQA) | 2 |
|
82 |
+
| Activation Function | SwiGLU |
|
83 |
+
| Position Encodings | RoPE (\Theta=500,000) |
|
84 |
+
| Layer Norm | RMSNorm |
|
85 |
+
| Tied Embeddings | Yes |
|
86 |
+
| Embedding Parameters | 0.13B |
|
87 |
+
| LM Head Parameters | 0.13B |
|
88 |
+
| Active Non-embedding Parameters | 0.34B |
|
89 |
+
| Total Non-embedding Parameters | 2.35B |
|
90 |
+
| Active Parameters | 0.6B |
|
91 |
+
| Total Parameters | 2.61B |
|
92 |
+
|
93 |
+
## Run the model
|
94 |
+
|
95 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
96 |
+
|
97 |
+
model_id = "utter-project/EuroMoE-2.6B-A0.6B-Instruct-Preview"
|
98 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
99 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
100 |
+
|
101 |
+
messages = [
|
102 |
+
{
|
103 |
+
"role": "system",
|
104 |
+
"content": "You are EuroLLM --- an AI assistant specialized in European languages that provides safe, educational and helpful answers.",
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"role": "user", "content": "What is the capital of Portugal? How would you describe it?"
|
108 |
+
},
|
109 |
+
]
|
110 |
+
|
111 |
+
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
112 |
+
outputs = model.generate(inputs, max_new_tokens=1024)
|
113 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
114 |
|
|
|
115 |
|
116 |
## Bias, Risks, and Limitations
|
117 |
|
118 |
+
EuroLLM-22B has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|