Feature Extraction
Transformers
ONNX
clip
vision
kimihailv commited on
Commit
5d859ef
·
verified ·
1 Parent(s): 589f0d2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -10
README.md CHANGED
@@ -79,12 +79,6 @@ There are two options to calculate semantic compatibility between an image and a
79
 
80
  ### Cosine Similarity
81
 
82
- ```python
83
- import torch.nn.functional as F
84
-
85
- similarity = F.cosine_similarity(image_embedding, text_embedding)
86
- ```
87
-
88
  The `similarity` will belong to the `[-1, 1]` range, `1` meaning the absolute match.
89
 
90
  __Pros__:
@@ -103,10 +97,6 @@ __Cons__:
103
  Unlike cosine similarity, unimodal embedding are not enough.
104
  Joint embedding will be needed and the resulting `score` will belong to the `[0, 1]` range, `1` meaning the absolute match.
105
 
106
- ```python
107
- score = model.get_matching_scores(joint_embedding)
108
- ```
109
-
110
  __Pros__:
111
 
112
  - Joint embedding captures fine-grained features.
 
79
 
80
  ### Cosine Similarity
81
 
 
 
 
 
 
 
82
  The `similarity` will belong to the `[-1, 1]` range, `1` meaning the absolute match.
83
 
84
  __Pros__:
 
97
  Unlike cosine similarity, unimodal embedding are not enough.
98
  Joint embedding will be needed and the resulting `score` will belong to the `[0, 1]` range, `1` meaning the absolute match.
99
 
 
 
 
 
100
  __Pros__:
101
 
102
  - Joint embedding captures fine-grained features.