shimmyshimmer commited on
Commit
3a7b573
·
verified ·
1 Parent(s): df3657b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: perplexity-ai/r1-1776-distill-llama-70b
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: mit
7
+ tags:
8
+ - deepseek
9
+ - deepseek_v3
10
+ - unsloth
11
+ - transformers
12
+ ---
13
+ <div>
14
+ <p style="margin-bottom: 0; margin-top: 0;">
15
+ <strong>See <a href="https://huggingface.co/collections/unsloth/deepseek-r1-all-versions-678e1c48f5d2fce87892ace5">our collection</a> for versions of Deepseek-R1 including GGUF & 4-bit formats.</strong>
16
+ </p>
17
+ <p style="margin-bottom: 0;">
18
+ <em>Unsloth's r1-1776 <a href="https://unsloth.ai/blog/deepseekr1-dynamic">2-bit Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 1-bit/2-bit.</em>
19
+ </p>
20
+ <div style="display: flex; gap: 5px; align-items: center; ">
21
+ <a href="https://github.com/unslothai/unsloth/">
22
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
23
+ </a>
24
+ <a href="https://discord.gg/unsloth">
25
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
26
+ </a>
27
+ <a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device">
28
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
29
+ </a>
30
+ </div>
31
+ <h1 style="margin-top: 0rem;">Finetune your own Reasoning model like R1 with Unsloth!</h2>
32
+ </div>
33
+
34
+ We have a free Google Colab notebook for turning Llama 3.1 (8B) into a reasoning model: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-GRPO.ipynb
35
+
36
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
37
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
38
+
39
+
40
+ ## ✨ Finetune for Free
41
+
42
+ All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
43
+
44
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
45
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
46
+ | **GRPO with Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4_(14B)-GRPO.ipynb) | 2x faster | 80% less |
47
+ | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
48
+ | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
49
+ | **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
50
+ | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
51
+ | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
52
+ | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
53
+ | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
54
+ | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
55
+
56
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
57
+
58
+ - This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
59
+ - This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
60
+ - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
61
+
62
+ # R1 1776 Distill Llama 70B
63
+
64
+ Blog link: [https://perplexity.ai/hub/blog/open-sourcing-r1-1776](https://perplexity.ai/hub/blog/open-sourcing-r1-1776 )
65
+
66
+ This is a Llama 70B distilled version of [R1 1776](https://huggingface.co/perplexity-ai/r1-1776).
67
+
68
+ R1 1776 is a DeepSeek-R1 reasoning model that has been post-trained by Perplexity AI to remove Chinese Communist Party censorship.
69
+ The model provides unbiased, accurate, and factual information while maintaining high reasoning capabilities.
70
+
71
+ ## Evals
72
+
73
+ To ensure our model remains fully “uncensored” and capable of engaging with a broad spectrum of sensitive topics,
74
+ we curated a diverse, multilingual evaluation set of over a 1000 of examples that comprehensively cover such subjects.
75
+ We then use human annotators as well as carefully designed LLM judges to measure the likelihood a model will evade or
76
+ provide overly sanitized responses to the queries.
77
+
78
+ We also ensured that the model’s math and reasoning abilities remained intact after the decensoring process.
79
+ Evaluations on multiple benchmarks showed that our post-trained model performed on par with the base R1 model,
80
+ indicating that the decensoring had no impact on its core reasoning capabilities.
81
+
82
+ | Benchmark | R1-Distill-Llama-70B | R1-1776-Distill-Llama-70B |
83
+ | --- | --- | --- |
84
+ | China Censorship | 80.53 | 0.2 |
85
+ | Internal Benchmarks (avg) | 47.64 | 48.4 |
86
+ | AIME 2024 | 70 | 70 |
87
+ | MATH-500 | 94.5 | 94.8 |
88
+ | MMLU | 88.52 * | 88.40 |
89
+ | DROP | 84.55 * | 84.83 |
90
+ | GPQA | 65.2 | 65.05 |
91
+
92
+ \* Evaluated by Perplexity AI since they were not reported in the [paper](https://arxiv.org/abs/2501.12948).