Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: perplexity-ai/r1-1776-distill-llama-70b
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
license: mit
|
7 |
+
tags:
|
8 |
+
- deepseek
|
9 |
+
- deepseek_v3
|
10 |
+
- unsloth
|
11 |
+
- transformers
|
12 |
+
---
|
13 |
+
<div>
|
14 |
+
<p style="margin-bottom: 0; margin-top: 0;">
|
15 |
+
<strong>See <a href="https://huggingface.co/collections/unsloth/deepseek-r1-all-versions-678e1c48f5d2fce87892ace5">our collection</a> for versions of Deepseek-R1 including GGUF & 4-bit formats.</strong>
|
16 |
+
</p>
|
17 |
+
<p style="margin-bottom: 0;">
|
18 |
+
<em>Unsloth's r1-1776 <a href="https://unsloth.ai/blog/deepseekr1-dynamic">2-bit Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 1-bit/2-bit.</em>
|
19 |
+
</p>
|
20 |
+
<div style="display: flex; gap: 5px; align-items: center; ">
|
21 |
+
<a href="https://github.com/unslothai/unsloth/">
|
22 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
|
23 |
+
</a>
|
24 |
+
<a href="https://discord.gg/unsloth">
|
25 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
|
26 |
+
</a>
|
27 |
+
<a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device">
|
28 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
|
29 |
+
</a>
|
30 |
+
</div>
|
31 |
+
<h1 style="margin-top: 0rem;">Instructions to run this model in llama.cpp:</h2>
|
32 |
+
</div>
|
33 |
+
|
34 |
+
Or you can view more detailed instructions here: [unsloth.ai/blog/deepseekr1-dynamic](https://unsloth.ai/blog/deepseekr1-dynamic)
|
35 |
+
1. Do not forget about `<|User|>` and `<|Assistant|>` tokens! - Or use a chat template formatter. Also
|
36 |
+
do not forget about `<think>\n`!
|
37 |
+
Prompt format: `"<|User|>Create a Flappy Bird game in Python.<|Assistant|><think>\n"`
|
38 |
+
2. Obtain the latest `llama.cpp` at https://github.com/ggerganov/llama.cpp. You can follow the build instructions below as well:
|
39 |
+
```bash
|
40 |
+
apt-get update
|
41 |
+
apt-get install build-essential cmake curl libcurl4-openssl-dev -y
|
42 |
+
git clone https://github.com/ggerganov/llama.cpp
|
43 |
+
cmake llama.cpp -B llama.cpp/build \
|
44 |
+
-DBUILD_SHARED_LIBS=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON
|
45 |
+
cmake --build llama.cpp/build --config Release -j --clean-first --target llama-quantize llama-cli llama-gguf-split
|
46 |
+
cp llama.cpp/build/bin/llama-* llama.cpp
|
47 |
+
```
|
48 |
+
3. It's best to use `--min-p 0.05` to counteract very rare token predictions - I found this to work well especially for the 1.58bit model.
|
49 |
+
4. Download the model via:
|
50 |
+
```python
|
51 |
+
# pip install huggingface_hub hf_transfer
|
52 |
+
# import os # Optional for faster downloading
|
53 |
+
# os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
54 |
+
|
55 |
+
from huggingface_hub import snapshot_download
|
56 |
+
snapshot_download(
|
57 |
+
repo_id = "unsloth/r1-1776-GGUF",
|
58 |
+
local_dir = "r1-1776-GGUF",
|
59 |
+
allow_patterns = ["*UD-Q2_K_XL*"], # Select quant type Q2_K_XL for dynamic 2bit
|
60 |
+
)
|
61 |
+
```
|
62 |
+
5. Example with Q4_0 K quantized cache **Notice -no-cnv disables auto conversation mode**
|
63 |
+
```bash
|
64 |
+
./llama.cpp/llama-cli \
|
65 |
+
--model r1-1776-GGUF/UD-Q2_K_XL/r1-1776-UD-Q2_K_XL-00001-of-00005.gguf \
|
66 |
+
--cache-type-k q4_0 \
|
67 |
+
--threads 12 -no-cnv --prio 2 \
|
68 |
+
--temp 0.6 \
|
69 |
+
--ctx-size 8192 \
|
70 |
+
--seed 3407 \
|
71 |
+
--prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|><think>\n"
|
72 |
+
```
|
73 |
+
Example output:
|
74 |
+
|
75 |
+
```txt
|
76 |
+
Okay, so I need to figure out what 1 plus 1 is. Hmm, where do I even start? I remember from school that adding numbers is pretty basic, but I want to make sure I understand it properly.
|
77 |
+
Let me think, 1 plus 1. So, I have one item and I add another one. Maybe like a apple plus another apple. If I have one apple and someone gives me another, I now have two apples. So, 1 plus 1 should be 2. That makes sense.
|
78 |
+
Wait, but sometimes math can be tricky. Could it be something else? Like, in a different number system maybe? But I think the question is straightforward, using regular numbers, not like binary or hexadecimal or anything.
|
79 |
+
I also recall that in arithmetic, addition is combining quantities. So, if you have two quantities of 1, combining them gives you a total of 2. Yeah, that seems right.
|
80 |
+
Is there a scenario where 1 plus 1 wouldn't be 2? I can't think of any...
|
81 |
+
```
|
82 |
+
|
83 |
+
6. If you have a GPU (RTX 4090 for example) with 24GB, you can offload multiple layers to the GPU for faster processing. If you have multiple GPUs, you can probably offload more layers.
|
84 |
+
```bash
|
85 |
+
./llama.cpp/llama-cli \
|
86 |
+
--model r1-1776-GGUF/UD-Q2_K_XL/r1-1776-UD-Q2_K_XL-00001-of-00005.gguf \
|
87 |
+
--cache-type-k q4_0 \
|
88 |
+
--threads 12 -no-cnv --prio 2 \
|
89 |
+
--n-gpu-layers 7 \
|
90 |
+
--temp 0.6 \
|
91 |
+
--ctx-size 8192 \
|
92 |
+
--seed 3407 \
|
93 |
+
--prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|><think>\n"
|
94 |
+
```
|
95 |
+
7. If you want to merge the weights together, use this script:
|
96 |
+
```
|
97 |
+
./llama.cpp/llama-gguf-split --merge \
|
98 |
+
r1-1776-GGUF/UD-Q2_K_XL/r1-1776-UD-Q2_K_XL-00001-of-00005.gguf \
|
99 |
+
merged_file.gguf
|
100 |
+
```
|
101 |
+
|
102 |
+
| Dynamic Bits | Type | Disk Size | Accuracy | Link | Details |
|
103 |
+
| -------- | -------- | ------------ | ------------ | ---------------------| ---------- |
|
104 |
+
| 2bit | UD-Q2_K_XL | **211GB** | Better | [Link](https://huggingface.co/unsloth/r1-1776-GGUF/tree/main/r1-1776-UD-Q2_K_XL) | MoE all 2.5bit. `down_proj` in MoE mixture of 3.5/2.5bit |
|
105 |
+
| 3bit | UD-Q3_K_XL | **298GB** | Best | [Link](https://huggingface.co/unsloth/r1-1776-GGUF/tree/main/r1-1776-UD-Q3_K_XL) | MoE Q3_K_M. Attention parts are upcasted |
|
106 |
+
| 4bit | UD-Q4_K_XL | **377GB** | Best | [Link](https://huggingface.co/unsloth/r1-1776-GGUF/tree/main/r1-1776-UD-Q4_K_XL) | MoE Q4_K_M. Attention parts are upcasted |
|
107 |
+
|
108 |
+
# Finetune your own Reasoning model like R1 with Unsloth!
|
109 |
+
We have a free Google Colab notebook for turning Llama 3.1 (8B) into a reasoning model: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-GRPO.ipynb
|
110 |
+
|
111 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
|
112 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
113 |
+
|
114 |
+
|
115 |
+
## ✨ Finetune for Free
|
116 |
+
|
117 |
+
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
|
118 |
+
|
119 |
+
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
120 |
+
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
121 |
+
| **GRPO with Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4_(14B)-GRPO.ipynb) | 2x faster | 80% less |
|
122 |
+
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
|
123 |
+
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
|
124 |
+
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
|
125 |
+
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
|
126 |
+
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
|
127 |
+
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
|
128 |
+
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
|
129 |
+
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
|
130 |
+
|
131 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
|
132 |
+
|
133 |
+
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
|
134 |
+
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
|
135 |
+
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
|
136 |
+
|
137 |
+
# R1 1776 Distill Llama 70B
|
138 |
+
|
139 |
+
Blog link: [https://perplexity.ai/hub/blog/open-sourcing-r1-1776](https://perplexity.ai/hub/blog/open-sourcing-r1-1776 )
|
140 |
+
|
141 |
+
This is a Llama 70B distilled version of [R1 1776](https://huggingface.co/perplexity-ai/r1-1776).
|
142 |
+
|
143 |
+
R1 1776 is a DeepSeek-R1 reasoning model that has been post-trained by Perplexity AI to remove Chinese Communist Party censorship.
|
144 |
+
The model provides unbiased, accurate, and factual information while maintaining high reasoning capabilities.
|
145 |
+
|
146 |
+
## Evals
|
147 |
+
|
148 |
+
To ensure our model remains fully “uncensored” and capable of engaging with a broad spectrum of sensitive topics,
|
149 |
+
we curated a diverse, multilingual evaluation set of over a 1000 of examples that comprehensively cover such subjects.
|
150 |
+
We then use human annotators as well as carefully designed LLM judges to measure the likelihood a model will evade or
|
151 |
+
provide overly sanitized responses to the queries.
|
152 |
+
|
153 |
+
We also ensured that the model’s math and reasoning abilities remained intact after the decensoring process.
|
154 |
+
Evaluations on multiple benchmarks showed that our post-trained model performed on par with the base R1 model,
|
155 |
+
indicating that the decensoring had no impact on its core reasoning capabilities.
|
156 |
+
|
157 |
+
| Benchmark | R1-Distill-Llama-70B | R1-1776-Distill-Llama-70B |
|
158 |
+
| --- | --- | --- |
|
159 |
+
| China Censorship | 80.53 | 0.2 |
|
160 |
+
| Internal Benchmarks (avg) | 47.64 | 48.4 |
|
161 |
+
| AIME 2024 | 70 | 70 |
|
162 |
+
| MATH-500 | 94.5 | 94.8 |
|
163 |
+
| MMLU | 88.52 * | 88.40 |
|
164 |
+
| DROP | 84.55 * | 84.83 |
|
165 |
+
| GPQA | 65.2 | 65.05 |
|
166 |
+
|
167 |
+
\* Evaluated by Perplexity AI since they were not reported in the [paper](https://arxiv.org/abs/2501.12948).
|