danielhanchen commited on
Commit
b780610
·
verified ·
1 Parent(s): 069f603

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: health-ai-developer-foundations
4
+ license_link: https://developers.google.com/health-ai-developer-foundations/terms
5
+ library_name: transformers
6
+ pipeline_tag: image-text-to-text
7
+ extra_gated_heading: Access MedGemma on Hugging Face
8
+ extra_gated_prompt: >-
9
+ To access MedGemma on Hugging Face, you're required to review and agree to
10
+ [Health AI Developer Foundation's terms of
11
+ use](https://developers.google.com/health-ai-developer-foundations/terms). To
12
+ do this, please ensure you're logged in to Hugging Face and click below.
13
+ Requests are processed immediately.
14
+ extra_gated_button_content: Acknowledge license
15
+ base_model:
16
+ - google/medgemma-27b-text-it
17
+ tags:
18
+ - medical
19
+ - unsloth
20
+ - clinical-reasoning
21
+ - thinking
22
+ ---
23
+ <div>
24
+ <p style="margin-top: 0;margin-bottom: 0;">
25
+ <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
26
+ </p>
27
+ <div style="display: flex; gap: 5px; align-items: center; ">
28
+ <a href="https://github.com/unslothai/unsloth/">
29
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
30
+ </a>
31
+ <a href="https://discord.gg/unsloth">
32
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
33
+ </a>
34
+ <a href="https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune">
35
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
36
+ </a>
37
+ </div>
38
+ </div>
39
+
40
+
41
+ # MedGemma model card
42
+
43
+ **Model documentation:** [MedGemma](https://developers.google.com/health-ai-developer-foundations/medgemma)
44
+
45
+ **Resources:**
46
+
47
+ * Model on Google Cloud Model Garden: [MedGemma](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/medgemma)
48
+ * Model on Hugging Face: [MedGemma](https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4)
49
+ * GitHub repository (supporting code, Colab notebooks, discussions, and
50
+ issues): [MedGemma](https://github.com/google-health/medgemma)
51
+ * Quick start notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb)
52
+ * Fine-tuning notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb)
53
+ * [Patient Education Demo built using MedGemma](https://huggingface.co/spaces/google/rad_explain)
54
+ * Support: See [Contact](https://developers.google.com/health-ai-developer-foundations/medgemma/get-started.md#contact)
55
+ * License: The use of MedGemma is governed by the [Health AI Developer
56
+ Foundations terms of
57
+ use](https://developers.google.com/health-ai-developer-foundations/terms).
58
+
59
+ **Author:** Google
60
+
61
+ ## Model information
62
+
63
+ This section describes the MedGemma model and how to use it.
64
+
65
+ ### Description
66
+
67
+ MedGemma is a collection of [Gemma 3](https://ai.google.dev/gemma/docs/core)
68
+ variants that are trained for performance on medical text and image
69
+ comprehension. Developers can use MedGemma to accelerate building
70
+ healthcare-based AI applications. MedGemma currently comes in two variants: a 4B
71
+ multimodal version and a 27B text-only version.
72
+
73
+ MedGemma 27B has been trained exclusively on medical text and optimized for
74
+ inference-time computation. MedGemma 27B is only available as an
75
+ instruction-tuned model.
76
+
77
+ MedGemma variants have been evaluated on a range of clinically relevant
78
+ benchmarks to illustrate their baseline performance. These include both open
79
+ benchmark datasets and curated datasets. Developers can fine-tune MedGemma
80
+ variants for improved performance. Consult the Intended Use section below for
81
+ more details.
82
+
83
+ A full technical report will be available soon.
84
+
85
+ ### How to use
86
+
87
+ Below are some example code snippets to help you quickly get started running the
88
+ model locally on GPU. If you want to use the model at scale, we recommend that
89
+ you create a production version using [Model
90
+ Garden](https://cloud.google.com/model-garden).
91
+
92
+ First, install the Transformers library. Gemma 3 is supported starting from
93
+ transformers 4.50.0.
94
+
95
+ ```sh
96
+ $ pip install -U transformers
97
+ ```
98
+
99
+ **Run model with the `pipeline` API**
100
+
101
+ ```python
102
+ from transformers import pipeline
103
+ import torch
104
+
105
+ pipe = pipeline(
106
+ "text-generation",
107
+ model="google/medgemma-27b-text-it",
108
+ torch_dtype=torch.bfloat16,
109
+ device="cuda",
110
+ )
111
+
112
+ messages = [
113
+ {
114
+ "role": "system",
115
+ "content": "You are a helpful medical assistant."
116
+ },
117
+ {
118
+ "role": "user",
119
+ "content": "How do you differentiate bacterial from viral pneumonia?"
120
+ }
121
+ ]
122
+
123
+ output = pipe(text=messages, max_new_tokens=200)
124
+ print(output[0]["generated_text"][-1]["content"])
125
+ ```
126
+
127
+ **Run the model directly**
128
+
129
+ ```python
130
+ # pip install accelerate
131
+ from transformers import AutoTokenizer, AutoModelForCausalLM
132
+ import torch
133
+
134
+ model_id = "google/medgemma-27b-text-it"
135
+
136
+ model = AutoModelForCausalLM.from_pretrained(
137
+ model_id,
138
+ torch_dtype=torch.bfloat16,
139
+ device_map="auto",
140
+ )
141
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
142
+
143
+ messages = [
144
+ {
145
+ "role": "system",
146
+ "content": "You are a helpful medical assistant."
147
+ },
148
+ {
149
+ "role": "user",
150
+ "content": "How do you differentiate bacterial from viral pneumonia?"
151
+ }
152
+ ]
153
+
154
+ inputs = tokenizer.apply_chat_template(
155
+ messages,
156
+ add_generation_prompt=True,
157
+ tokenize=True,
158
+ return_dict=True,
159
+ return_tensors="pt",
160
+ ).to(model.device)
161
+
162
+ input_len = inputs["input_ids"].shape[-1]
163
+
164
+ with torch.inference_mode():
165
+ generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
166
+ generation = generation[0][input_len:]
167
+
168
+ decoded = tokenizer.decode(generation, skip_special_tokens=True)
169
+ print(decoded)
170
+ ```
171
+
172
+ ### Examples
173
+
174
+ See the following Colab notebooks for examples of how to use MedGemma:
175
+
176
+ * To give the model a quick try, running it locally with weights from Hugging
177
+ Face, see [Quick start notebook in
178
+ Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb). Note that you will need to use Colab
179
+ Enterprise to run the 27B model without quantization.
180
+
181
+ * For an example of fine-tuning the model, see the [Fine-tuning notebook in
182
+ Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb).
183
+
184
+ ### Model architecture overview
185
+
186
+ The MedGemma model is built based on [Gemma 3](https://ai.google.dev/gemma/) and
187
+ uses the same decoder-only transformer architecture as Gemma 3. To read more
188
+ about the architecture, consult the Gemma 3 [model
189
+ card](https://ai.google.dev/gemma/docs/core/model_card_3).
190
+
191
+ ### Technical specifications
192
+
193
+ * **Model type**: Decoder-only Transformer architecture, see the [Gemma 3
194
+ technical
195
+ report](https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf)
196
+ * **Modalities**: **4B**: Text, vision; **27B**: Text only
197
+ * **Attention mechanism**: Utilizes grouped-query attention (GQA)
198
+ * **Context length**: Supports long context, at least 128K tokens
199
+ * **Key publication**: Coming soon
200
+ * **Model created**: May 20, 2025
201
+ * **Model version**: 1.0.0
202
+
203
+ ### Citation
204
+
205
+ A technical report is coming soon. In the meantime, if you publish using this
206
+ model, please cite the Hugging Face model page:
207
+
208
+ ```none
209
+ @misc{medgemma-hf,
210
+ author = {Google},
211
+ title = {MedGemma Hugging Face}
212
+ howpublished = {\url{https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4}},
213
+ year = {2025},
214
+ note = {Accessed: [Insert Date Accessed, e.g., 2025-05-20]}
215
+ }
216
+ ```
217
+
218
+ ### Inputs and outputs
219
+
220
+ **Input**:
221
+
222
+ * Text string, such as a question or prompt
223
+ * Total input length of 128K tokens
224
+
225
+ **Output**:
226
+
227
+ * Generated text in response to the input, such as an answer to a question,
228
+ analysis of image content, or a summary of a document
229
+ * Total output length of 8192 tokens
230
+
231
+ ### Performance and validation
232
+
233
+ MedGemma was evaluated across a range of different multimodal classification,
234
+ report generation, visual question answering, and text-based tasks.
235
+
236
+ ### Key performance metrics
237
+
238
+ #### Text evaluations
239
+
240
+ MedGemma 4B and text-only MedGemma 27B were evaluated across a range of
241
+ text-only benchmarks for medical knowledge and reasoning.
242
+
243
+ The MedGemma models outperform their respective base Gemma models across all
244
+ tested text-only health benchmarks.
245
+
246
+ | Metric | MedGemma 27B | Gemma 3 27B | MedGemma 4B | Gemma 3 4B |
247
+ | :---- | :---- | :---- | :---- | :---- |
248
+ | MedQA (4-op) | 89.8 (best-of-5) 87.7 (0-shot) | 74.9 | 64.4 | 50.7 |
249
+ | MedMCQA | 74.2 | 62.6 | 55.7 | 45.4 |
250
+ | PubMedQA | 76.8 | 73.4 | 73.4 | 68.4 |
251
+ | MMLU Med (text only) | 87.0 | 83.3 | 70.0 | 67.2 |
252
+ | MedXpertQA (text only) | 26.7 | 15.7 | 14.2 | 11.6 |
253
+ | AfriMed-QA | 84.0 | 72.0 | 52.0 | 48.0 |
254
+
255
+ For all MedGemma 27B results, [test-time
256
+ scaling](https://arxiv.org/abs/2501.19393) is used to improve performance.
257
+
258
+ ### Ethics and safety evaluation
259
+
260
+ #### Evaluation approach
261
+
262
+ Our evaluation methods include structured evaluations and internal red-teaming
263
+ testing of relevant content policies. Red-teaming was conducted by a number of
264
+ different teams, each with different goals and human evaluation metrics. These
265
+ models were evaluated against a number of different categories relevant to
266
+ ethics and safety, including:
267
+
268
+ * **Child safety**: Evaluation of text-to-text and image-to-text prompts
269
+ covering child safety policies, including child sexual abuse and
270
+ exploitation.
271
+ * **Content safety:** Evaluation of text-to-text and image-to-text prompts
272
+ covering safety policies, including harassment, violence and gore, and hate
273
+ speech.
274
+ * **Representational harms**: Evaluation of text-to-text and image-to-text
275
+ prompts covering safety policies, including bias, stereotyping, and harmful
276
+ associations or inaccuracies.
277
+ * **General medical harms:** Evaluation of text-to-text and image-to-text
278
+ prompts covering safety policies, including information quality and harmful
279
+ associations or inaccuracies.
280
+
281
+ In addition to development level evaluations, we conduct "assurance evaluations"
282
+ which are our "arms-length" internal evaluations for responsibility governance
283
+ decision making. They are conducted separately from the model development team,
284
+ to inform decision making about release. High-level findings are fed back to the
285
+ model team, but prompt sets are held out to prevent overfitting and preserve the
286
+ results' ability to inform decision making. Notable assurance evaluation results
287
+ are reported to our Responsibility & Safety Council as part of release review.
288
+
289
+ #### Evaluation results
290
+
291
+ For all areas of safety testing, we saw safe levels of performance across the
292
+ categories of child safety, content safety, and representational harms. All
293
+ testing was conducted without safety filters to evaluate the model capabilities
294
+ and behaviors. For text-to-text, image-to-text, and audio-to-text, and across
295
+ both MedGemma model sizes, the model produced minimal policy violations. A
296
+ limitation of our evaluations was that they included primarily English language
297
+ prompts.
298
+
299
+ ## Data card
300
+
301
+ ### Dataset overview
302
+
303
+ #### Training
304
+
305
+ The base Gemma models are pre-trained on a large corpus of text and code data.
306
+ MedGemma 4B utilizes a [SigLIP](https://arxiv.org/abs/2303.15343) image encoder
307
+ that has been specifically pre-trained on a variety of de-identified medical
308
+ data, including radiology images, histopathology images, ophthalmology images,
309
+ and dermatology images. Its LLM component is trained on a diverse set of medical
310
+ data, including medical text relevant to radiology images, chest-x rays,
311
+ histopathology patches, ophthalmology images and dermatology images.
312
+
313
+ #### Evaluation
314
+
315
+ MedGemma models have been evaluated on a comprehensive set of clinically
316
+ relevant benchmarks, including over 22 datasets across 5 different tasks and 6
317
+ medical image modalities. These include both open benchmark datasets and curated
318
+ datasets, with a focus on expert human evaluations for tasks like CXR report
319
+ generation and radiology VQA.
320
+
321
+ #### Source
322
+
323
+ MedGemma utilizes a combination of public and private datasets.
324
+
325
+ This model was trained on diverse public datasets including MIMIC-CXR (chest
326
+ X-rays and reports), Slake-VQA (multimodal medical images and questions),
327
+ PAD-UFES-20 (skin lesion images and data), SCIN (dermatology images), TCGA
328
+ (cancer genomics data), CAMELYON (lymph node histopathology images), PMC-OA
329
+ (biomedical literature with images), and Mendeley Digital Knee X-Ray (knee
330
+ X-rays).
331
+
332
+ Additionally, multiple diverse proprietary datasets were licensed and
333
+ incorporated (described next).
334
+
335
+ ### Data Ownership and Documentation
336
+
337
+ * [Mimic-CXR](https://physionet.org/content/mimic-cxr/2.1.0/): MIT Laboratory
338
+ for Computational Physiology and Beth Israel Deaconess Medical Center
339
+ (BIDMC).
340
+ * [Slake-VQA](https://www.med-vqa.com/slake/): The Hong Kong Polytechnic
341
+ University (PolyU), with collaborators including West China Hospital of
342
+ Sichuan University and Sichuan Academy of Medical Sciences / Sichuan
343
+ Provincial People's Hospital.
344
+ * [PAD-UFES-20](https://pmc.ncbi.nlm.nih.gov/articles/PMC7479321/): Federal
345
+ University of Espírito Santo (UFES), Brazil, through its Dermatological and
346
+ Surgical Assistance Program (PAD).
347
+ * [SCIN](https://github.com/google-research-datasets/scin): A collaboration
348
+ between Google Health and Stanford Medicine.
349
+ * [TCGA](https://portal.gdc.cancer.gov/) (The Cancer Genome Atlas): A joint
350
+ effort of National Cancer Institute and National Human Genome Research
351
+ Institute. Data from TCGA are available via the Genomic Data Commons (GDC)
352
+ * [CAMELYON](https://camelyon17.grand-challenge.org/Data/): The data was
353
+ collected from Radboud University Medical Center and University Medical
354
+ Center Utrecht in the Netherlands.
355
+ * [PMC-OA (PubMed Central Open Access
356
+ Subset)](https://catalog.data.gov/dataset/pubmed-central-open-access-subset-pmc-oa):
357
+ Maintained by the National Library of Medicine (NLM) and National Center for
358
+ Biotechnology Information (NCBI), which are part of the NIH.
359
+ * [MedQA](https://arxiv.org/pdf/2009.13081): This dataset was created by a
360
+ team of researchers led by Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung
361
+ Weng, Hanyi Fang, and Peter Szolovits
362
+ * [Mendeley Digital Knee
363
+ X-Ray](https://data.mendeley.com/datasets/t9ndx37v5h/1): This dataset is
364
+ from Rani Channamma University, and is hosted on Mendeley Data.
365
+ * [AfriMed-QA](https://afrimedqa.com/): This data was developed and led by
366
+ multiple collaborating organizations and researchers include key
367
+ contributors: Intron Health, SisonkeBiotik, BioRAMP, Georgia Institute of
368
+ Technology, and MasakhaneNLP.
369
+ * [VQA-RAD](https://www.nature.com/articles/sdata2018251): This dataset was
370
+ created by a research team led by Jason J. Lau, Soumya Gayen, Asma Ben
371
+ Abacha, and Dina Demner-Fushman and their affiliated institutions (the US
372
+ National Library of Medicine and National Institutes of Health)
373
+ * [MedExpQA](https://www.sciencedirect.com/science/article/pii/S0933365724001805):
374
+ This dataset was created by researchers at the HiTZ Center (Basque Center
375
+ for Language Technology and Artificial Intelligence).
376
+ * [MedXpertQA](https://huggingface.co/datasets/TsinghuaC3I/MedXpertQA): This
377
+ dataset was developed by researchers at Tsinghua University (Beijing, China)
378
+ and Shanghai Artificial Intelligence Laboratory (Shanghai, China).
379
+
380
+ In addition to the public datasets listed above, MedGemma was also trained on
381
+ de-identified datasets licensed for research or collected internally at Google
382
+ from consented participants.
383
+
384
+ * Radiology dataset 1: De-identified dataset of different CT studies across
385
+ body parts from a US-based radiology outpatient diagnostic center network.
386
+ * Ophthalmology dataset 1: De-identified dataset of fundus images from
387
+ diabetic retinopathy screening.
388
+ * Dermatology dataset 1: De-identified dataset of teledermatology skin
389
+ condition images (both clinical and dermatoscopic) from Colombia.
390
+ * Dermatology dataset 2: De-identified dataset of skin cancer images (both
391
+ clinical and dermatoscopic) from Australia.
392
+ * Dermatology dataset 3: De-identified dataset of non-diseased skin images
393
+ from an internal data collection effort.
394
+ * Pathology dataset 1: De-identified dataset of histopathology H&E whole slide
395
+ images created in collaboration with an academic research hospital and
396
+ biobank in Europe. Comprises de-identified colon, prostate, and lymph nodes.
397
+ * Pathology dataset 2: De-identified dataset of lung histopathology H&E and
398
+ IHC whole slide images created by a commercial biobank in the United States.
399
+ * Pathology dataset 3: De-identified dataset of prostate and lymph node H&E
400
+ and IHC histopathology whole slide images created by a contract research
401
+ organization in the United States.
402
+ * Pathology dataset 4: De-identified dataset of histopathology, predominantly
403
+ H\&E whole slide images created in collaboration with a large, tertiary
404
+ teaching hospital in the United States. Comprises a diverse set of tissue
405
+ and stain types, predominantly H&E.
406
+
407
+ ### Data citation
408
+
409
+ * MIMIC-CXR Johnson, A., Pollard, T., Mark, R., Berkowitz, S., & Horng, S.
410
+ (2024). MIMIC-CXR Database (version 2.1.0). PhysioNet.
411
+ * Johnson, A.E.W., Pollard, T.J., Berkowitz, S.J. et al. [MIMIC-CXR, a
412
+ de-identified publicly available database of chest radiographs with
413
+ free-text reports. Sci Data 6, 317
414
+ (2019).](https://doi.org/10.1038/s41597-019-0322-0)
415
+ * Available on Physionet Goldberger, A., Amaral, L., Glass, L., Hausdorff, J.,
416
+ Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). [PhysioBank,
417
+ PhysioToolkit, and PhysioNet: Components of a new research resource for
418
+ complex physiologic signals. Circulation \[Online\]. 101 (23), pp.
419
+ E215–e220.](https://pubmed.ncbi.nlm.nih.gov/10851218/)
420
+ * Bo Liu, Li-Ming Zhan, etc. [SLAKE: A Semantically-Labeled Knowledge-Enhanced
421
+ Dataset for Medical Visual Question
422
+ Answering](https://arxiv.org/abs/2102.09542).
423
+ * [PAD-UFES-20: A skin lesion dataset composed of patient data and clinical
424
+ images collected from
425
+ smartphones](https://pmc.ncbi.nlm.nih.gov/articles/PMC7479321/)
426
+ * [The Cancer Genome Atlas Program (TCGA)](https://www.cancer.gov/ccg/research/genome-sequencing/tcga)
427
+ * Babak Ehteshami Bejnordi, etc.: [Diagnostic Assessment of Deep Learning
428
+ Algorithms for Detection of Lymph Node Metastases in Women With Breast
429
+ Cancer](https://jamanetwork.com/journals/jama/fullarticle/2665774)
430
+ * MedQA: [https://arxiv.org/abs/2009.13081](https://arxiv.org/abs/2009.13081)
431
+ * Mendeley Digital Knee X-Ray: Gornale, Shivanand; Patravali, Pooja (2020),
432
+ "Digital Knee X-ray Images", Mendeley Data, V1, doi: 10.17632/t9ndx37v5h.1
433
+ * AfriMed-QA: [https://arxiv.org/abs/2411.15640](https://arxiv.org/abs/2411.15640)
434
+ * VQA-RAD: [Lau, J., Gayen, S., Ben Abacha, A. et al. A dataset of clinically
435
+ generated visual questions and answers about radiology images. Sci Data 5,
436
+ 180251 (2018).
437
+ https://doi.org/10.1038/sdata.2018.251](https://doi.org/10.1038/sdata.2018.251)
438
+ * [MedExpQA: Multilingual benchmarking of Large Language Models for
439
+ Medical Question
440
+ Answering](https://www.sciencedirect.com/science/article/pii/S0933365724001805)
441
+ * MedXpertQA: [arXiv:2501.18362v2](https://arxiv.org/abs/2501.18362)
442
+
443
+ ### De-identification/anonymization:
444
+
445
+ Google and partnerships utilize datasets that have been rigorously anonymized or
446
+ de-identified to ensure the protection of individual research participants and
447
+ patient privacy
448
+
449
+ ## Implementation information
450
+
451
+ Details about the model internals.
452
+
453
+ ### Software
454
+
455
+ Training was done using [JAX](https://github.com/jax-ml/jax).
456
+
457
+ JAX allows researchers to take advantage of the latest generation of hardware,
458
+ including TPUs, for faster and more efficient training of large models.
459
+
460
+ ## Use and limitations
461
+
462
+ ### Intended use
463
+
464
+ MedGemma is an open multimodal generative AI model intended to be used as a
465
+ starting point that enables more efficient development of downstream healthcare
466
+ applications involving medical text and images. MedGemma is intended for
467
+ developers in the life sciences and healthcare space. Developers are responsible
468
+ for training, adapting and making meaningful changes to MedGemma to accomplish
469
+ their specific intended use. MedGemma models can be fine-tuned by developers
470
+ using their own proprietary data for their specific tasks or solutions.
471
+
472
+ MedGemma is based on Gemma 3 and has been further trained on medical images and
473
+ text. MedGemma enables further development in any medical context (image and
474
+ textual), however the model was pre-trained using chest X-ray, pathology,
475
+ dermatology, and fundus images. Examples of tasks within MedGemma's training
476
+ include visual question answering pertaining to medical images, such as
477
+ radiographs, or providing answers to textual medical questions. Full details of
478
+ all the tasks MedGemma has been evaluated can be found in an upcoming technical
479
+ report.
480
+
481
+ ### Benefits
482
+
483
+ * Provides strong baseline medical image and text comprehension for models of
484
+ its size.
485
+ * This strong performance makes it efficient to adapt for downstream
486
+ healthcare-based use cases, compared to models of similar size without
487
+ medical data pre-training.
488
+ * This adaptation may involve prompt engineering, grounding, agentic
489
+ orchestration or fine-tuning depending on the use case, baseline validation
490
+ requirements, and desired performance characteristics.
491
+
492
+ ### Limitations
493
+
494
+ MedGemma is not intended to be used without appropriate validation, adaptation
495
+ and/or making meaningful modification by developers for their specific use case.
496
+ The outputs generated by MedGemma are not intended to directly inform clinical
497
+ diagnosis, patient management decisions, treatment recommendations, or any other
498
+ direct clinical practice applications. Performance benchmarks highlight baseline
499
+ capabilities on relevant benchmarks, but even for image and text domains that
500
+ constitute a substantial portion of training data, inaccurate model output is
501
+ possible. All outputs from MedGemma should be considered preliminary and require
502
+ independent verification, clinical correlation, and further investigation
503
+ through established research and development methodologies.
504
+
505
+ MedGemma's multimodal capabilities have been primarily evaluated on single-image
506
+ tasks. MedGemma has not been evaluated in use cases that involve comprehension
507
+ of multiple images.
508
+
509
+ MedGemma has not been evaluated or optimized for multi-turn applications.
510
+
511
+ MedGemma's training may make it more sensitive to the specific prompt used than
512
+ Gemma 3.
513
+
514
+ When adapting MedGemma developer should consider the following:
515
+
516
+ * **Bias in validation data:** As with any research, developers should ensure
517
+ that any downstream application is validated to understand performance using
518
+ data that is appropriately representative of the intended use setting for
519
+ the specific application (e.g., age, sex, gender, condition, imaging device,
520
+ etc).
521
+ * **Data contamination concerns**: When evaluating the generalization
522
+ capabilities of a large model like MedGemma in a medical context, there is a
523
+ risk of data contamination, where the model might have inadvertently seen
524
+ related medical information during its pre-training, potentially
525
+ overestimating its true ability to generalize to novel medical concepts.
526
+ Developers should validate MedGemma on datasets not publicly available or
527
+ otherwise made available to non-institutional researchers to mitigate this
528
+ risk.
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_logit_softcapping": null,
8
+ "bos_token_id": 2,
9
+ "cache_implementation": "hybrid",
10
+ "eos_token_id": 106,
11
+ "final_logit_softcapping": null,
12
+ "head_dim": 128,
13
+ "hidden_activation": "gelu_pytorch_tanh",
14
+ "hidden_size": 5376,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 21504,
17
+ "max_position_embeddings": 131072,
18
+ "model_type": "gemma3_text",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 62,
21
+ "num_key_value_heads": 16,
22
+ "pad_token_id": 0,
23
+ "query_pre_attn_scalar": 168,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_local_base_freq": 10000,
26
+ "rope_scaling": {
27
+ "factor": 8.0,
28
+ "rope_type": "linear"
29
+ },
30
+ "rope_theta": 1000000,
31
+ "sliding_window": 1024,
32
+ "sliding_window_pattern": 6,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.51.3",
35
+ "unsloth_fixed": true,
36
+ "use_cache": true,
37
+ "vocab_size": 262144
38
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 2,
3
+ "cache_implementation": "hybrid",
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 1,
7
+ 106
8
+ ],
9
+ "max_length": 131072,
10
+ "pad_token_id": 0,
11
+ "top_k": 64,
12
+ "top_p": 0.95,
13
+ "transformers_version": "4.51.3"
14
+ }
model-00001-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5502d07e095d756a28ca23b084aa08ead7e156176b607c73cfd0bccd1ceeedc0
3
+ size 4833502584
model-00002-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73c84e29811510319cacb288a0626dbca8b8656c94c329b9bf256d0605080ed8
3
+ size 4954791768
model-00003-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea67918ed79e8400ae5af9117c19b256518dc1bf0820a8dea8c458b6557647bf
3
+ size 4954791816
model-00004-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:410695b14a3ebfac32dde918b2e9370410c7b7af1a9e002fdf0ab6de83776519
3
+ size 4954791848
model-00005-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39d87097f798a9a65b1e9f0edefd56ce4f3c29a7f41b30002732da5e36e5a846
3
+ size 4954791848
model-00006-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54e01e1bf45e2d2287caab02c50601810a3ed944e5bd3cb800febf4c6992953f
3
+ size 4954791848
model-00007-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0b08a9e5a6d28e3664d51f008639bb8729003e735ffb3bc4093a921be244244
3
+ size 4954791848
model-00008-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a234ed761c398ff38b94c6ee2c00fd94a52ba461c9bc33ea7c7336b43e30e93e
3
+ size 4954791848
model-00009-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b059d8cfe26a40995fea6f2da36148bd52ac54f408d3b7961b6777467b378aba
3
+ size 4954791848
model-00010-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f5ff7500f69448553a190ac0307a8189e863a4d734a19c56d2fb3587a58c3b4
3
+ size 4954791848
model-00011-of-00011.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fbf93f82e76c9b77259bdc72c3a0b7a7f8d86291c17feda93ab078226397b50
3
+ size 4591469784
model.safetensors.index.json ADDED
@@ -0,0 +1,815 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 54018004480
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00011.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00011.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00011.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00011.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00011.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00011.safetensors",
12
+ "model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00011.safetensors",
13
+ "model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00011.safetensors",
14
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00011.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00011.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00011.safetensors",
17
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00011.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00011.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00011.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00011.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00011.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00011.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00011.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00011.safetensors",
25
+ "model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00011.safetensors",
26
+ "model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00011.safetensors",
27
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00011.safetensors",
28
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00011.safetensors",
29
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00011.safetensors",
30
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00011.safetensors",
31
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00011.safetensors",
32
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00011.safetensors",
33
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00011.safetensors",
34
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00011.safetensors",
35
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00011.safetensors",
36
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00011.safetensors",
37
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00011.safetensors",
38
+ "model.layers.10.post_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
39
+ "model.layers.10.pre_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
40
+ "model.layers.10.self_attn.k_norm.weight": "model-00003-of-00011.safetensors",
41
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00011.safetensors",
42
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00011.safetensors",
43
+ "model.layers.10.self_attn.q_norm.weight": "model-00003-of-00011.safetensors",
44
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00011.safetensors",
45
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00011.safetensors",
46
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00011.safetensors",
47
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00011.safetensors",
48
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00011.safetensors",
49
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00011.safetensors",
50
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00011.safetensors",
51
+ "model.layers.11.post_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
52
+ "model.layers.11.pre_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
53
+ "model.layers.11.self_attn.k_norm.weight": "model-00003-of-00011.safetensors",
54
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00011.safetensors",
55
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00011.safetensors",
56
+ "model.layers.11.self_attn.q_norm.weight": "model-00003-of-00011.safetensors",
57
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00011.safetensors",
58
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00011.safetensors",
59
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00011.safetensors",
60
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00011.safetensors",
61
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00011.safetensors",
62
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00011.safetensors",
63
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00011.safetensors",
64
+ "model.layers.12.post_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
65
+ "model.layers.12.pre_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
66
+ "model.layers.12.self_attn.k_norm.weight": "model-00003-of-00011.safetensors",
67
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00011.safetensors",
68
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00011.safetensors",
69
+ "model.layers.12.self_attn.q_norm.weight": "model-00003-of-00011.safetensors",
70
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00011.safetensors",
71
+ "model.layers.12.self_attn.v_proj.weight": "model-00003-of-00011.safetensors",
72
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00011.safetensors",
73
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00011.safetensors",
74
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00011.safetensors",
75
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00011.safetensors",
76
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00011.safetensors",
77
+ "model.layers.13.post_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
78
+ "model.layers.13.pre_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
79
+ "model.layers.13.self_attn.k_norm.weight": "model-00003-of-00011.safetensors",
80
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00011.safetensors",
81
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00011.safetensors",
82
+ "model.layers.13.self_attn.q_norm.weight": "model-00003-of-00011.safetensors",
83
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00011.safetensors",
84
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00011.safetensors",
85
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00011.safetensors",
86
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00011.safetensors",
87
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00011.safetensors",
88
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00011.safetensors",
89
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00011.safetensors",
90
+ "model.layers.14.post_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
91
+ "model.layers.14.pre_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
92
+ "model.layers.14.self_attn.k_norm.weight": "model-00003-of-00011.safetensors",
93
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00011.safetensors",
94
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00011.safetensors",
95
+ "model.layers.14.self_attn.q_norm.weight": "model-00003-of-00011.safetensors",
96
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00011.safetensors",
97
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00011.safetensors",
98
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00011.safetensors",
99
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00011.safetensors",
100
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00011.safetensors",
101
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00011.safetensors",
102
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00011.safetensors",
103
+ "model.layers.15.post_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
104
+ "model.layers.15.pre_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
105
+ "model.layers.15.self_attn.k_norm.weight": "model-00004-of-00011.safetensors",
106
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00011.safetensors",
107
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00011.safetensors",
108
+ "model.layers.15.self_attn.q_norm.weight": "model-00004-of-00011.safetensors",
109
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00011.safetensors",
110
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00011.safetensors",
111
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00011.safetensors",
112
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00011.safetensors",
113
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00011.safetensors",
114
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00011.safetensors",
115
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00011.safetensors",
116
+ "model.layers.16.post_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
117
+ "model.layers.16.pre_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
118
+ "model.layers.16.self_attn.k_norm.weight": "model-00004-of-00011.safetensors",
119
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00011.safetensors",
120
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00011.safetensors",
121
+ "model.layers.16.self_attn.q_norm.weight": "model-00004-of-00011.safetensors",
122
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00011.safetensors",
123
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00011.safetensors",
124
+ "model.layers.17.input_layernorm.weight": "model-00004-of-00011.safetensors",
125
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00011.safetensors",
126
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00011.safetensors",
127
+ "model.layers.17.mlp.up_proj.weight": "model-00004-of-00011.safetensors",
128
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00011.safetensors",
129
+ "model.layers.17.post_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
130
+ "model.layers.17.pre_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
131
+ "model.layers.17.self_attn.k_norm.weight": "model-00004-of-00011.safetensors",
132
+ "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00011.safetensors",
133
+ "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00011.safetensors",
134
+ "model.layers.17.self_attn.q_norm.weight": "model-00004-of-00011.safetensors",
135
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00011.safetensors",
136
+ "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00011.safetensors",
137
+ "model.layers.18.input_layernorm.weight": "model-00004-of-00011.safetensors",
138
+ "model.layers.18.mlp.down_proj.weight": "model-00004-of-00011.safetensors",
139
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00011.safetensors",
140
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00011.safetensors",
141
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00011.safetensors",
142
+ "model.layers.18.post_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
143
+ "model.layers.18.pre_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
144
+ "model.layers.18.self_attn.k_norm.weight": "model-00004-of-00011.safetensors",
145
+ "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00011.safetensors",
146
+ "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00011.safetensors",
147
+ "model.layers.18.self_attn.q_norm.weight": "model-00004-of-00011.safetensors",
148
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00011.safetensors",
149
+ "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00011.safetensors",
150
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00011.safetensors",
151
+ "model.layers.19.mlp.down_proj.weight": "model-00004-of-00011.safetensors",
152
+ "model.layers.19.mlp.gate_proj.weight": "model-00004-of-00011.safetensors",
153
+ "model.layers.19.mlp.up_proj.weight": "model-00004-of-00011.safetensors",
154
+ "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00011.safetensors",
155
+ "model.layers.19.post_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
156
+ "model.layers.19.pre_feedforward_layernorm.weight": "model-00004-of-00011.safetensors",
157
+ "model.layers.19.self_attn.k_norm.weight": "model-00004-of-00011.safetensors",
158
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00011.safetensors",
159
+ "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00011.safetensors",
160
+ "model.layers.19.self_attn.q_norm.weight": "model-00004-of-00011.safetensors",
161
+ "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00011.safetensors",
162
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00011.safetensors",
163
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00011.safetensors",
164
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00011.safetensors",
165
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00011.safetensors",
166
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00011.safetensors",
167
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00011.safetensors",
168
+ "model.layers.2.post_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
169
+ "model.layers.2.pre_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
170
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00011.safetensors",
171
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00011.safetensors",
172
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00011.safetensors",
173
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00011.safetensors",
174
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00011.safetensors",
175
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00011.safetensors",
176
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00011.safetensors",
177
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00011.safetensors",
178
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00011.safetensors",
179
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00011.safetensors",
180
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00011.safetensors",
181
+ "model.layers.20.post_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
182
+ "model.layers.20.pre_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
183
+ "model.layers.20.self_attn.k_norm.weight": "model-00004-of-00011.safetensors",
184
+ "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00011.safetensors",
185
+ "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00011.safetensors",
186
+ "model.layers.20.self_attn.q_norm.weight": "model-00004-of-00011.safetensors",
187
+ "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00011.safetensors",
188
+ "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00011.safetensors",
189
+ "model.layers.21.input_layernorm.weight": "model-00005-of-00011.safetensors",
190
+ "model.layers.21.mlp.down_proj.weight": "model-00005-of-00011.safetensors",
191
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00011.safetensors",
192
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00011.safetensors",
193
+ "model.layers.21.post_attention_layernorm.weight": "model-00005-of-00011.safetensors",
194
+ "model.layers.21.post_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
195
+ "model.layers.21.pre_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
196
+ "model.layers.21.self_attn.k_norm.weight": "model-00005-of-00011.safetensors",
197
+ "model.layers.21.self_attn.k_proj.weight": "model-00005-of-00011.safetensors",
198
+ "model.layers.21.self_attn.o_proj.weight": "model-00005-of-00011.safetensors",
199
+ "model.layers.21.self_attn.q_norm.weight": "model-00005-of-00011.safetensors",
200
+ "model.layers.21.self_attn.q_proj.weight": "model-00005-of-00011.safetensors",
201
+ "model.layers.21.self_attn.v_proj.weight": "model-00005-of-00011.safetensors",
202
+ "model.layers.22.input_layernorm.weight": "model-00005-of-00011.safetensors",
203
+ "model.layers.22.mlp.down_proj.weight": "model-00005-of-00011.safetensors",
204
+ "model.layers.22.mlp.gate_proj.weight": "model-00005-of-00011.safetensors",
205
+ "model.layers.22.mlp.up_proj.weight": "model-00005-of-00011.safetensors",
206
+ "model.layers.22.post_attention_layernorm.weight": "model-00005-of-00011.safetensors",
207
+ "model.layers.22.post_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
208
+ "model.layers.22.pre_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
209
+ "model.layers.22.self_attn.k_norm.weight": "model-00005-of-00011.safetensors",
210
+ "model.layers.22.self_attn.k_proj.weight": "model-00005-of-00011.safetensors",
211
+ "model.layers.22.self_attn.o_proj.weight": "model-00005-of-00011.safetensors",
212
+ "model.layers.22.self_attn.q_norm.weight": "model-00005-of-00011.safetensors",
213
+ "model.layers.22.self_attn.q_proj.weight": "model-00005-of-00011.safetensors",
214
+ "model.layers.22.self_attn.v_proj.weight": "model-00005-of-00011.safetensors",
215
+ "model.layers.23.input_layernorm.weight": "model-00005-of-00011.safetensors",
216
+ "model.layers.23.mlp.down_proj.weight": "model-00005-of-00011.safetensors",
217
+ "model.layers.23.mlp.gate_proj.weight": "model-00005-of-00011.safetensors",
218
+ "model.layers.23.mlp.up_proj.weight": "model-00005-of-00011.safetensors",
219
+ "model.layers.23.post_attention_layernorm.weight": "model-00005-of-00011.safetensors",
220
+ "model.layers.23.post_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
221
+ "model.layers.23.pre_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
222
+ "model.layers.23.self_attn.k_norm.weight": "model-00005-of-00011.safetensors",
223
+ "model.layers.23.self_attn.k_proj.weight": "model-00005-of-00011.safetensors",
224
+ "model.layers.23.self_attn.o_proj.weight": "model-00005-of-00011.safetensors",
225
+ "model.layers.23.self_attn.q_norm.weight": "model-00005-of-00011.safetensors",
226
+ "model.layers.23.self_attn.q_proj.weight": "model-00005-of-00011.safetensors",
227
+ "model.layers.23.self_attn.v_proj.weight": "model-00005-of-00011.safetensors",
228
+ "model.layers.24.input_layernorm.weight": "model-00005-of-00011.safetensors",
229
+ "model.layers.24.mlp.down_proj.weight": "model-00005-of-00011.safetensors",
230
+ "model.layers.24.mlp.gate_proj.weight": "model-00005-of-00011.safetensors",
231
+ "model.layers.24.mlp.up_proj.weight": "model-00005-of-00011.safetensors",
232
+ "model.layers.24.post_attention_layernorm.weight": "model-00005-of-00011.safetensors",
233
+ "model.layers.24.post_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
234
+ "model.layers.24.pre_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
235
+ "model.layers.24.self_attn.k_norm.weight": "model-00005-of-00011.safetensors",
236
+ "model.layers.24.self_attn.k_proj.weight": "model-00005-of-00011.safetensors",
237
+ "model.layers.24.self_attn.o_proj.weight": "model-00005-of-00011.safetensors",
238
+ "model.layers.24.self_attn.q_norm.weight": "model-00005-of-00011.safetensors",
239
+ "model.layers.24.self_attn.q_proj.weight": "model-00005-of-00011.safetensors",
240
+ "model.layers.24.self_attn.v_proj.weight": "model-00005-of-00011.safetensors",
241
+ "model.layers.25.input_layernorm.weight": "model-00005-of-00011.safetensors",
242
+ "model.layers.25.mlp.down_proj.weight": "model-00005-of-00011.safetensors",
243
+ "model.layers.25.mlp.gate_proj.weight": "model-00005-of-00011.safetensors",
244
+ "model.layers.25.mlp.up_proj.weight": "model-00005-of-00011.safetensors",
245
+ "model.layers.25.post_attention_layernorm.weight": "model-00005-of-00011.safetensors",
246
+ "model.layers.25.post_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
247
+ "model.layers.25.pre_feedforward_layernorm.weight": "model-00005-of-00011.safetensors",
248
+ "model.layers.25.self_attn.k_norm.weight": "model-00005-of-00011.safetensors",
249
+ "model.layers.25.self_attn.k_proj.weight": "model-00005-of-00011.safetensors",
250
+ "model.layers.25.self_attn.o_proj.weight": "model-00005-of-00011.safetensors",
251
+ "model.layers.25.self_attn.q_norm.weight": "model-00005-of-00011.safetensors",
252
+ "model.layers.25.self_attn.q_proj.weight": "model-00005-of-00011.safetensors",
253
+ "model.layers.25.self_attn.v_proj.weight": "model-00005-of-00011.safetensors",
254
+ "model.layers.26.input_layernorm.weight": "model-00006-of-00011.safetensors",
255
+ "model.layers.26.mlp.down_proj.weight": "model-00006-of-00011.safetensors",
256
+ "model.layers.26.mlp.gate_proj.weight": "model-00005-of-00011.safetensors",
257
+ "model.layers.26.mlp.up_proj.weight": "model-00006-of-00011.safetensors",
258
+ "model.layers.26.post_attention_layernorm.weight": "model-00006-of-00011.safetensors",
259
+ "model.layers.26.post_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
260
+ "model.layers.26.pre_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
261
+ "model.layers.26.self_attn.k_norm.weight": "model-00005-of-00011.safetensors",
262
+ "model.layers.26.self_attn.k_proj.weight": "model-00005-of-00011.safetensors",
263
+ "model.layers.26.self_attn.o_proj.weight": "model-00005-of-00011.safetensors",
264
+ "model.layers.26.self_attn.q_norm.weight": "model-00005-of-00011.safetensors",
265
+ "model.layers.26.self_attn.q_proj.weight": "model-00005-of-00011.safetensors",
266
+ "model.layers.26.self_attn.v_proj.weight": "model-00005-of-00011.safetensors",
267
+ "model.layers.27.input_layernorm.weight": "model-00006-of-00011.safetensors",
268
+ "model.layers.27.mlp.down_proj.weight": "model-00006-of-00011.safetensors",
269
+ "model.layers.27.mlp.gate_proj.weight": "model-00006-of-00011.safetensors",
270
+ "model.layers.27.mlp.up_proj.weight": "model-00006-of-00011.safetensors",
271
+ "model.layers.27.post_attention_layernorm.weight": "model-00006-of-00011.safetensors",
272
+ "model.layers.27.post_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
273
+ "model.layers.27.pre_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
274
+ "model.layers.27.self_attn.k_norm.weight": "model-00006-of-00011.safetensors",
275
+ "model.layers.27.self_attn.k_proj.weight": "model-00006-of-00011.safetensors",
276
+ "model.layers.27.self_attn.o_proj.weight": "model-00006-of-00011.safetensors",
277
+ "model.layers.27.self_attn.q_norm.weight": "model-00006-of-00011.safetensors",
278
+ "model.layers.27.self_attn.q_proj.weight": "model-00006-of-00011.safetensors",
279
+ "model.layers.27.self_attn.v_proj.weight": "model-00006-of-00011.safetensors",
280
+ "model.layers.28.input_layernorm.weight": "model-00006-of-00011.safetensors",
281
+ "model.layers.28.mlp.down_proj.weight": "model-00006-of-00011.safetensors",
282
+ "model.layers.28.mlp.gate_proj.weight": "model-00006-of-00011.safetensors",
283
+ "model.layers.28.mlp.up_proj.weight": "model-00006-of-00011.safetensors",
284
+ "model.layers.28.post_attention_layernorm.weight": "model-00006-of-00011.safetensors",
285
+ "model.layers.28.post_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
286
+ "model.layers.28.pre_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
287
+ "model.layers.28.self_attn.k_norm.weight": "model-00006-of-00011.safetensors",
288
+ "model.layers.28.self_attn.k_proj.weight": "model-00006-of-00011.safetensors",
289
+ "model.layers.28.self_attn.o_proj.weight": "model-00006-of-00011.safetensors",
290
+ "model.layers.28.self_attn.q_norm.weight": "model-00006-of-00011.safetensors",
291
+ "model.layers.28.self_attn.q_proj.weight": "model-00006-of-00011.safetensors",
292
+ "model.layers.28.self_attn.v_proj.weight": "model-00006-of-00011.safetensors",
293
+ "model.layers.29.input_layernorm.weight": "model-00006-of-00011.safetensors",
294
+ "model.layers.29.mlp.down_proj.weight": "model-00006-of-00011.safetensors",
295
+ "model.layers.29.mlp.gate_proj.weight": "model-00006-of-00011.safetensors",
296
+ "model.layers.29.mlp.up_proj.weight": "model-00006-of-00011.safetensors",
297
+ "model.layers.29.post_attention_layernorm.weight": "model-00006-of-00011.safetensors",
298
+ "model.layers.29.post_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
299
+ "model.layers.29.pre_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
300
+ "model.layers.29.self_attn.k_norm.weight": "model-00006-of-00011.safetensors",
301
+ "model.layers.29.self_attn.k_proj.weight": "model-00006-of-00011.safetensors",
302
+ "model.layers.29.self_attn.o_proj.weight": "model-00006-of-00011.safetensors",
303
+ "model.layers.29.self_attn.q_norm.weight": "model-00006-of-00011.safetensors",
304
+ "model.layers.29.self_attn.q_proj.weight": "model-00006-of-00011.safetensors",
305
+ "model.layers.29.self_attn.v_proj.weight": "model-00006-of-00011.safetensors",
306
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00011.safetensors",
307
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00011.safetensors",
308
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00011.safetensors",
309
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00011.safetensors",
310
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00011.safetensors",
311
+ "model.layers.3.post_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
312
+ "model.layers.3.pre_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
313
+ "model.layers.3.self_attn.k_norm.weight": "model-00002-of-00011.safetensors",
314
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00011.safetensors",
315
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00011.safetensors",
316
+ "model.layers.3.self_attn.q_norm.weight": "model-00002-of-00011.safetensors",
317
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00011.safetensors",
318
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00011.safetensors",
319
+ "model.layers.30.input_layernorm.weight": "model-00006-of-00011.safetensors",
320
+ "model.layers.30.mlp.down_proj.weight": "model-00006-of-00011.safetensors",
321
+ "model.layers.30.mlp.gate_proj.weight": "model-00006-of-00011.safetensors",
322
+ "model.layers.30.mlp.up_proj.weight": "model-00006-of-00011.safetensors",
323
+ "model.layers.30.post_attention_layernorm.weight": "model-00006-of-00011.safetensors",
324
+ "model.layers.30.post_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
325
+ "model.layers.30.pre_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
326
+ "model.layers.30.self_attn.k_norm.weight": "model-00006-of-00011.safetensors",
327
+ "model.layers.30.self_attn.k_proj.weight": "model-00006-of-00011.safetensors",
328
+ "model.layers.30.self_attn.o_proj.weight": "model-00006-of-00011.safetensors",
329
+ "model.layers.30.self_attn.q_norm.weight": "model-00006-of-00011.safetensors",
330
+ "model.layers.30.self_attn.q_proj.weight": "model-00006-of-00011.safetensors",
331
+ "model.layers.30.self_attn.v_proj.weight": "model-00006-of-00011.safetensors",
332
+ "model.layers.31.input_layernorm.weight": "model-00006-of-00011.safetensors",
333
+ "model.layers.31.mlp.down_proj.weight": "model-00006-of-00011.safetensors",
334
+ "model.layers.31.mlp.gate_proj.weight": "model-00006-of-00011.safetensors",
335
+ "model.layers.31.mlp.up_proj.weight": "model-00006-of-00011.safetensors",
336
+ "model.layers.31.post_attention_layernorm.weight": "model-00006-of-00011.safetensors",
337
+ "model.layers.31.post_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
338
+ "model.layers.31.pre_feedforward_layernorm.weight": "model-00006-of-00011.safetensors",
339
+ "model.layers.31.self_attn.k_norm.weight": "model-00006-of-00011.safetensors",
340
+ "model.layers.31.self_attn.k_proj.weight": "model-00006-of-00011.safetensors",
341
+ "model.layers.31.self_attn.o_proj.weight": "model-00006-of-00011.safetensors",
342
+ "model.layers.31.self_attn.q_norm.weight": "model-00006-of-00011.safetensors",
343
+ "model.layers.31.self_attn.q_proj.weight": "model-00006-of-00011.safetensors",
344
+ "model.layers.31.self_attn.v_proj.weight": "model-00006-of-00011.safetensors",
345
+ "model.layers.32.input_layernorm.weight": "model-00007-of-00011.safetensors",
346
+ "model.layers.32.mlp.down_proj.weight": "model-00007-of-00011.safetensors",
347
+ "model.layers.32.mlp.gate_proj.weight": "model-00006-of-00011.safetensors",
348
+ "model.layers.32.mlp.up_proj.weight": "model-00007-of-00011.safetensors",
349
+ "model.layers.32.post_attention_layernorm.weight": "model-00007-of-00011.safetensors",
350
+ "model.layers.32.post_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
351
+ "model.layers.32.pre_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
352
+ "model.layers.32.self_attn.k_norm.weight": "model-00006-of-00011.safetensors",
353
+ "model.layers.32.self_attn.k_proj.weight": "model-00006-of-00011.safetensors",
354
+ "model.layers.32.self_attn.o_proj.weight": "model-00006-of-00011.safetensors",
355
+ "model.layers.32.self_attn.q_norm.weight": "model-00006-of-00011.safetensors",
356
+ "model.layers.32.self_attn.q_proj.weight": "model-00006-of-00011.safetensors",
357
+ "model.layers.32.self_attn.v_proj.weight": "model-00006-of-00011.safetensors",
358
+ "model.layers.33.input_layernorm.weight": "model-00007-of-00011.safetensors",
359
+ "model.layers.33.mlp.down_proj.weight": "model-00007-of-00011.safetensors",
360
+ "model.layers.33.mlp.gate_proj.weight": "model-00007-of-00011.safetensors",
361
+ "model.layers.33.mlp.up_proj.weight": "model-00007-of-00011.safetensors",
362
+ "model.layers.33.post_attention_layernorm.weight": "model-00007-of-00011.safetensors",
363
+ "model.layers.33.post_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
364
+ "model.layers.33.pre_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
365
+ "model.layers.33.self_attn.k_norm.weight": "model-00007-of-00011.safetensors",
366
+ "model.layers.33.self_attn.k_proj.weight": "model-00007-of-00011.safetensors",
367
+ "model.layers.33.self_attn.o_proj.weight": "model-00007-of-00011.safetensors",
368
+ "model.layers.33.self_attn.q_norm.weight": "model-00007-of-00011.safetensors",
369
+ "model.layers.33.self_attn.q_proj.weight": "model-00007-of-00011.safetensors",
370
+ "model.layers.33.self_attn.v_proj.weight": "model-00007-of-00011.safetensors",
371
+ "model.layers.34.input_layernorm.weight": "model-00007-of-00011.safetensors",
372
+ "model.layers.34.mlp.down_proj.weight": "model-00007-of-00011.safetensors",
373
+ "model.layers.34.mlp.gate_proj.weight": "model-00007-of-00011.safetensors",
374
+ "model.layers.34.mlp.up_proj.weight": "model-00007-of-00011.safetensors",
375
+ "model.layers.34.post_attention_layernorm.weight": "model-00007-of-00011.safetensors",
376
+ "model.layers.34.post_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
377
+ "model.layers.34.pre_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
378
+ "model.layers.34.self_attn.k_norm.weight": "model-00007-of-00011.safetensors",
379
+ "model.layers.34.self_attn.k_proj.weight": "model-00007-of-00011.safetensors",
380
+ "model.layers.34.self_attn.o_proj.weight": "model-00007-of-00011.safetensors",
381
+ "model.layers.34.self_attn.q_norm.weight": "model-00007-of-00011.safetensors",
382
+ "model.layers.34.self_attn.q_proj.weight": "model-00007-of-00011.safetensors",
383
+ "model.layers.34.self_attn.v_proj.weight": "model-00007-of-00011.safetensors",
384
+ "model.layers.35.input_layernorm.weight": "model-00007-of-00011.safetensors",
385
+ "model.layers.35.mlp.down_proj.weight": "model-00007-of-00011.safetensors",
386
+ "model.layers.35.mlp.gate_proj.weight": "model-00007-of-00011.safetensors",
387
+ "model.layers.35.mlp.up_proj.weight": "model-00007-of-00011.safetensors",
388
+ "model.layers.35.post_attention_layernorm.weight": "model-00007-of-00011.safetensors",
389
+ "model.layers.35.post_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
390
+ "model.layers.35.pre_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
391
+ "model.layers.35.self_attn.k_norm.weight": "model-00007-of-00011.safetensors",
392
+ "model.layers.35.self_attn.k_proj.weight": "model-00007-of-00011.safetensors",
393
+ "model.layers.35.self_attn.o_proj.weight": "model-00007-of-00011.safetensors",
394
+ "model.layers.35.self_attn.q_norm.weight": "model-00007-of-00011.safetensors",
395
+ "model.layers.35.self_attn.q_proj.weight": "model-00007-of-00011.safetensors",
396
+ "model.layers.35.self_attn.v_proj.weight": "model-00007-of-00011.safetensors",
397
+ "model.layers.36.input_layernorm.weight": "model-00007-of-00011.safetensors",
398
+ "model.layers.36.mlp.down_proj.weight": "model-00007-of-00011.safetensors",
399
+ "model.layers.36.mlp.gate_proj.weight": "model-00007-of-00011.safetensors",
400
+ "model.layers.36.mlp.up_proj.weight": "model-00007-of-00011.safetensors",
401
+ "model.layers.36.post_attention_layernorm.weight": "model-00007-of-00011.safetensors",
402
+ "model.layers.36.post_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
403
+ "model.layers.36.pre_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
404
+ "model.layers.36.self_attn.k_norm.weight": "model-00007-of-00011.safetensors",
405
+ "model.layers.36.self_attn.k_proj.weight": "model-00007-of-00011.safetensors",
406
+ "model.layers.36.self_attn.o_proj.weight": "model-00007-of-00011.safetensors",
407
+ "model.layers.36.self_attn.q_norm.weight": "model-00007-of-00011.safetensors",
408
+ "model.layers.36.self_attn.q_proj.weight": "model-00007-of-00011.safetensors",
409
+ "model.layers.36.self_attn.v_proj.weight": "model-00007-of-00011.safetensors",
410
+ "model.layers.37.input_layernorm.weight": "model-00007-of-00011.safetensors",
411
+ "model.layers.37.mlp.down_proj.weight": "model-00007-of-00011.safetensors",
412
+ "model.layers.37.mlp.gate_proj.weight": "model-00007-of-00011.safetensors",
413
+ "model.layers.37.mlp.up_proj.weight": "model-00007-of-00011.safetensors",
414
+ "model.layers.37.post_attention_layernorm.weight": "model-00007-of-00011.safetensors",
415
+ "model.layers.37.post_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
416
+ "model.layers.37.pre_feedforward_layernorm.weight": "model-00007-of-00011.safetensors",
417
+ "model.layers.37.self_attn.k_norm.weight": "model-00007-of-00011.safetensors",
418
+ "model.layers.37.self_attn.k_proj.weight": "model-00007-of-00011.safetensors",
419
+ "model.layers.37.self_attn.o_proj.weight": "model-00007-of-00011.safetensors",
420
+ "model.layers.37.self_attn.q_norm.weight": "model-00007-of-00011.safetensors",
421
+ "model.layers.37.self_attn.q_proj.weight": "model-00007-of-00011.safetensors",
422
+ "model.layers.37.self_attn.v_proj.weight": "model-00007-of-00011.safetensors",
423
+ "model.layers.38.input_layernorm.weight": "model-00008-of-00011.safetensors",
424
+ "model.layers.38.mlp.down_proj.weight": "model-00008-of-00011.safetensors",
425
+ "model.layers.38.mlp.gate_proj.weight": "model-00007-of-00011.safetensors",
426
+ "model.layers.38.mlp.up_proj.weight": "model-00008-of-00011.safetensors",
427
+ "model.layers.38.post_attention_layernorm.weight": "model-00008-of-00011.safetensors",
428
+ "model.layers.38.post_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
429
+ "model.layers.38.pre_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
430
+ "model.layers.38.self_attn.k_norm.weight": "model-00007-of-00011.safetensors",
431
+ "model.layers.38.self_attn.k_proj.weight": "model-00007-of-00011.safetensors",
432
+ "model.layers.38.self_attn.o_proj.weight": "model-00007-of-00011.safetensors",
433
+ "model.layers.38.self_attn.q_norm.weight": "model-00007-of-00011.safetensors",
434
+ "model.layers.38.self_attn.q_proj.weight": "model-00007-of-00011.safetensors",
435
+ "model.layers.38.self_attn.v_proj.weight": "model-00007-of-00011.safetensors",
436
+ "model.layers.39.input_layernorm.weight": "model-00008-of-00011.safetensors",
437
+ "model.layers.39.mlp.down_proj.weight": "model-00008-of-00011.safetensors",
438
+ "model.layers.39.mlp.gate_proj.weight": "model-00008-of-00011.safetensors",
439
+ "model.layers.39.mlp.up_proj.weight": "model-00008-of-00011.safetensors",
440
+ "model.layers.39.post_attention_layernorm.weight": "model-00008-of-00011.safetensors",
441
+ "model.layers.39.post_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
442
+ "model.layers.39.pre_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
443
+ "model.layers.39.self_attn.k_norm.weight": "model-00008-of-00011.safetensors",
444
+ "model.layers.39.self_attn.k_proj.weight": "model-00008-of-00011.safetensors",
445
+ "model.layers.39.self_attn.o_proj.weight": "model-00008-of-00011.safetensors",
446
+ "model.layers.39.self_attn.q_norm.weight": "model-00008-of-00011.safetensors",
447
+ "model.layers.39.self_attn.q_proj.weight": "model-00008-of-00011.safetensors",
448
+ "model.layers.39.self_attn.v_proj.weight": "model-00008-of-00011.safetensors",
449
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00011.safetensors",
450
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00011.safetensors",
451
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00011.safetensors",
452
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00011.safetensors",
453
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00011.safetensors",
454
+ "model.layers.4.post_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
455
+ "model.layers.4.pre_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
456
+ "model.layers.4.self_attn.k_norm.weight": "model-00002-of-00011.safetensors",
457
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00011.safetensors",
458
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00011.safetensors",
459
+ "model.layers.4.self_attn.q_norm.weight": "model-00002-of-00011.safetensors",
460
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00011.safetensors",
461
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00011.safetensors",
462
+ "model.layers.40.input_layernorm.weight": "model-00008-of-00011.safetensors",
463
+ "model.layers.40.mlp.down_proj.weight": "model-00008-of-00011.safetensors",
464
+ "model.layers.40.mlp.gate_proj.weight": "model-00008-of-00011.safetensors",
465
+ "model.layers.40.mlp.up_proj.weight": "model-00008-of-00011.safetensors",
466
+ "model.layers.40.post_attention_layernorm.weight": "model-00008-of-00011.safetensors",
467
+ "model.layers.40.post_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
468
+ "model.layers.40.pre_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
469
+ "model.layers.40.self_attn.k_norm.weight": "model-00008-of-00011.safetensors",
470
+ "model.layers.40.self_attn.k_proj.weight": "model-00008-of-00011.safetensors",
471
+ "model.layers.40.self_attn.o_proj.weight": "model-00008-of-00011.safetensors",
472
+ "model.layers.40.self_attn.q_norm.weight": "model-00008-of-00011.safetensors",
473
+ "model.layers.40.self_attn.q_proj.weight": "model-00008-of-00011.safetensors",
474
+ "model.layers.40.self_attn.v_proj.weight": "model-00008-of-00011.safetensors",
475
+ "model.layers.41.input_layernorm.weight": "model-00008-of-00011.safetensors",
476
+ "model.layers.41.mlp.down_proj.weight": "model-00008-of-00011.safetensors",
477
+ "model.layers.41.mlp.gate_proj.weight": "model-00008-of-00011.safetensors",
478
+ "model.layers.41.mlp.up_proj.weight": "model-00008-of-00011.safetensors",
479
+ "model.layers.41.post_attention_layernorm.weight": "model-00008-of-00011.safetensors",
480
+ "model.layers.41.post_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
481
+ "model.layers.41.pre_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
482
+ "model.layers.41.self_attn.k_norm.weight": "model-00008-of-00011.safetensors",
483
+ "model.layers.41.self_attn.k_proj.weight": "model-00008-of-00011.safetensors",
484
+ "model.layers.41.self_attn.o_proj.weight": "model-00008-of-00011.safetensors",
485
+ "model.layers.41.self_attn.q_norm.weight": "model-00008-of-00011.safetensors",
486
+ "model.layers.41.self_attn.q_proj.weight": "model-00008-of-00011.safetensors",
487
+ "model.layers.41.self_attn.v_proj.weight": "model-00008-of-00011.safetensors",
488
+ "model.layers.42.input_layernorm.weight": "model-00008-of-00011.safetensors",
489
+ "model.layers.42.mlp.down_proj.weight": "model-00008-of-00011.safetensors",
490
+ "model.layers.42.mlp.gate_proj.weight": "model-00008-of-00011.safetensors",
491
+ "model.layers.42.mlp.up_proj.weight": "model-00008-of-00011.safetensors",
492
+ "model.layers.42.post_attention_layernorm.weight": "model-00008-of-00011.safetensors",
493
+ "model.layers.42.post_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
494
+ "model.layers.42.pre_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
495
+ "model.layers.42.self_attn.k_norm.weight": "model-00008-of-00011.safetensors",
496
+ "model.layers.42.self_attn.k_proj.weight": "model-00008-of-00011.safetensors",
497
+ "model.layers.42.self_attn.o_proj.weight": "model-00008-of-00011.safetensors",
498
+ "model.layers.42.self_attn.q_norm.weight": "model-00008-of-00011.safetensors",
499
+ "model.layers.42.self_attn.q_proj.weight": "model-00008-of-00011.safetensors",
500
+ "model.layers.42.self_attn.v_proj.weight": "model-00008-of-00011.safetensors",
501
+ "model.layers.43.input_layernorm.weight": "model-00008-of-00011.safetensors",
502
+ "model.layers.43.mlp.down_proj.weight": "model-00008-of-00011.safetensors",
503
+ "model.layers.43.mlp.gate_proj.weight": "model-00008-of-00011.safetensors",
504
+ "model.layers.43.mlp.up_proj.weight": "model-00008-of-00011.safetensors",
505
+ "model.layers.43.post_attention_layernorm.weight": "model-00008-of-00011.safetensors",
506
+ "model.layers.43.post_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
507
+ "model.layers.43.pre_feedforward_layernorm.weight": "model-00008-of-00011.safetensors",
508
+ "model.layers.43.self_attn.k_norm.weight": "model-00008-of-00011.safetensors",
509
+ "model.layers.43.self_attn.k_proj.weight": "model-00008-of-00011.safetensors",
510
+ "model.layers.43.self_attn.o_proj.weight": "model-00008-of-00011.safetensors",
511
+ "model.layers.43.self_attn.q_norm.weight": "model-00008-of-00011.safetensors",
512
+ "model.layers.43.self_attn.q_proj.weight": "model-00008-of-00011.safetensors",
513
+ "model.layers.43.self_attn.v_proj.weight": "model-00008-of-00011.safetensors",
514
+ "model.layers.44.input_layernorm.weight": "model-00009-of-00011.safetensors",
515
+ "model.layers.44.mlp.down_proj.weight": "model-00009-of-00011.safetensors",
516
+ "model.layers.44.mlp.gate_proj.weight": "model-00008-of-00011.safetensors",
517
+ "model.layers.44.mlp.up_proj.weight": "model-00009-of-00011.safetensors",
518
+ "model.layers.44.post_attention_layernorm.weight": "model-00009-of-00011.safetensors",
519
+ "model.layers.44.post_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
520
+ "model.layers.44.pre_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
521
+ "model.layers.44.self_attn.k_norm.weight": "model-00008-of-00011.safetensors",
522
+ "model.layers.44.self_attn.k_proj.weight": "model-00008-of-00011.safetensors",
523
+ "model.layers.44.self_attn.o_proj.weight": "model-00008-of-00011.safetensors",
524
+ "model.layers.44.self_attn.q_norm.weight": "model-00008-of-00011.safetensors",
525
+ "model.layers.44.self_attn.q_proj.weight": "model-00008-of-00011.safetensors",
526
+ "model.layers.44.self_attn.v_proj.weight": "model-00008-of-00011.safetensors",
527
+ "model.layers.45.input_layernorm.weight": "model-00009-of-00011.safetensors",
528
+ "model.layers.45.mlp.down_proj.weight": "model-00009-of-00011.safetensors",
529
+ "model.layers.45.mlp.gate_proj.weight": "model-00009-of-00011.safetensors",
530
+ "model.layers.45.mlp.up_proj.weight": "model-00009-of-00011.safetensors",
531
+ "model.layers.45.post_attention_layernorm.weight": "model-00009-of-00011.safetensors",
532
+ "model.layers.45.post_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
533
+ "model.layers.45.pre_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
534
+ "model.layers.45.self_attn.k_norm.weight": "model-00009-of-00011.safetensors",
535
+ "model.layers.45.self_attn.k_proj.weight": "model-00009-of-00011.safetensors",
536
+ "model.layers.45.self_attn.o_proj.weight": "model-00009-of-00011.safetensors",
537
+ "model.layers.45.self_attn.q_norm.weight": "model-00009-of-00011.safetensors",
538
+ "model.layers.45.self_attn.q_proj.weight": "model-00009-of-00011.safetensors",
539
+ "model.layers.45.self_attn.v_proj.weight": "model-00009-of-00011.safetensors",
540
+ "model.layers.46.input_layernorm.weight": "model-00009-of-00011.safetensors",
541
+ "model.layers.46.mlp.down_proj.weight": "model-00009-of-00011.safetensors",
542
+ "model.layers.46.mlp.gate_proj.weight": "model-00009-of-00011.safetensors",
543
+ "model.layers.46.mlp.up_proj.weight": "model-00009-of-00011.safetensors",
544
+ "model.layers.46.post_attention_layernorm.weight": "model-00009-of-00011.safetensors",
545
+ "model.layers.46.post_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
546
+ "model.layers.46.pre_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
547
+ "model.layers.46.self_attn.k_norm.weight": "model-00009-of-00011.safetensors",
548
+ "model.layers.46.self_attn.k_proj.weight": "model-00009-of-00011.safetensors",
549
+ "model.layers.46.self_attn.o_proj.weight": "model-00009-of-00011.safetensors",
550
+ "model.layers.46.self_attn.q_norm.weight": "model-00009-of-00011.safetensors",
551
+ "model.layers.46.self_attn.q_proj.weight": "model-00009-of-00011.safetensors",
552
+ "model.layers.46.self_attn.v_proj.weight": "model-00009-of-00011.safetensors",
553
+ "model.layers.47.input_layernorm.weight": "model-00009-of-00011.safetensors",
554
+ "model.layers.47.mlp.down_proj.weight": "model-00009-of-00011.safetensors",
555
+ "model.layers.47.mlp.gate_proj.weight": "model-00009-of-00011.safetensors",
556
+ "model.layers.47.mlp.up_proj.weight": "model-00009-of-00011.safetensors",
557
+ "model.layers.47.post_attention_layernorm.weight": "model-00009-of-00011.safetensors",
558
+ "model.layers.47.post_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
559
+ "model.layers.47.pre_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
560
+ "model.layers.47.self_attn.k_norm.weight": "model-00009-of-00011.safetensors",
561
+ "model.layers.47.self_attn.k_proj.weight": "model-00009-of-00011.safetensors",
562
+ "model.layers.47.self_attn.o_proj.weight": "model-00009-of-00011.safetensors",
563
+ "model.layers.47.self_attn.q_norm.weight": "model-00009-of-00011.safetensors",
564
+ "model.layers.47.self_attn.q_proj.weight": "model-00009-of-00011.safetensors",
565
+ "model.layers.47.self_attn.v_proj.weight": "model-00009-of-00011.safetensors",
566
+ "model.layers.48.input_layernorm.weight": "model-00009-of-00011.safetensors",
567
+ "model.layers.48.mlp.down_proj.weight": "model-00009-of-00011.safetensors",
568
+ "model.layers.48.mlp.gate_proj.weight": "model-00009-of-00011.safetensors",
569
+ "model.layers.48.mlp.up_proj.weight": "model-00009-of-00011.safetensors",
570
+ "model.layers.48.post_attention_layernorm.weight": "model-00009-of-00011.safetensors",
571
+ "model.layers.48.post_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
572
+ "model.layers.48.pre_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
573
+ "model.layers.48.self_attn.k_norm.weight": "model-00009-of-00011.safetensors",
574
+ "model.layers.48.self_attn.k_proj.weight": "model-00009-of-00011.safetensors",
575
+ "model.layers.48.self_attn.o_proj.weight": "model-00009-of-00011.safetensors",
576
+ "model.layers.48.self_attn.q_norm.weight": "model-00009-of-00011.safetensors",
577
+ "model.layers.48.self_attn.q_proj.weight": "model-00009-of-00011.safetensors",
578
+ "model.layers.48.self_attn.v_proj.weight": "model-00009-of-00011.safetensors",
579
+ "model.layers.49.input_layernorm.weight": "model-00009-of-00011.safetensors",
580
+ "model.layers.49.mlp.down_proj.weight": "model-00009-of-00011.safetensors",
581
+ "model.layers.49.mlp.gate_proj.weight": "model-00009-of-00011.safetensors",
582
+ "model.layers.49.mlp.up_proj.weight": "model-00009-of-00011.safetensors",
583
+ "model.layers.49.post_attention_layernorm.weight": "model-00009-of-00011.safetensors",
584
+ "model.layers.49.post_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
585
+ "model.layers.49.pre_feedforward_layernorm.weight": "model-00009-of-00011.safetensors",
586
+ "model.layers.49.self_attn.k_norm.weight": "model-00009-of-00011.safetensors",
587
+ "model.layers.49.self_attn.k_proj.weight": "model-00009-of-00011.safetensors",
588
+ "model.layers.49.self_attn.o_proj.weight": "model-00009-of-00011.safetensors",
589
+ "model.layers.49.self_attn.q_norm.weight": "model-00009-of-00011.safetensors",
590
+ "model.layers.49.self_attn.q_proj.weight": "model-00009-of-00011.safetensors",
591
+ "model.layers.49.self_attn.v_proj.weight": "model-00009-of-00011.safetensors",
592
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00011.safetensors",
593
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00011.safetensors",
594
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00011.safetensors",
595
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00011.safetensors",
596
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00011.safetensors",
597
+ "model.layers.5.post_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
598
+ "model.layers.5.pre_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
599
+ "model.layers.5.self_attn.k_norm.weight": "model-00002-of-00011.safetensors",
600
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00011.safetensors",
601
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00011.safetensors",
602
+ "model.layers.5.self_attn.q_norm.weight": "model-00002-of-00011.safetensors",
603
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00011.safetensors",
604
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00011.safetensors",
605
+ "model.layers.50.input_layernorm.weight": "model-00010-of-00011.safetensors",
606
+ "model.layers.50.mlp.down_proj.weight": "model-00010-of-00011.safetensors",
607
+ "model.layers.50.mlp.gate_proj.weight": "model-00009-of-00011.safetensors",
608
+ "model.layers.50.mlp.up_proj.weight": "model-00010-of-00011.safetensors",
609
+ "model.layers.50.post_attention_layernorm.weight": "model-00010-of-00011.safetensors",
610
+ "model.layers.50.post_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
611
+ "model.layers.50.pre_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
612
+ "model.layers.50.self_attn.k_norm.weight": "model-00009-of-00011.safetensors",
613
+ "model.layers.50.self_attn.k_proj.weight": "model-00009-of-00011.safetensors",
614
+ "model.layers.50.self_attn.o_proj.weight": "model-00009-of-00011.safetensors",
615
+ "model.layers.50.self_attn.q_norm.weight": "model-00009-of-00011.safetensors",
616
+ "model.layers.50.self_attn.q_proj.weight": "model-00009-of-00011.safetensors",
617
+ "model.layers.50.self_attn.v_proj.weight": "model-00009-of-00011.safetensors",
618
+ "model.layers.51.input_layernorm.weight": "model-00010-of-00011.safetensors",
619
+ "model.layers.51.mlp.down_proj.weight": "model-00010-of-00011.safetensors",
620
+ "model.layers.51.mlp.gate_proj.weight": "model-00010-of-00011.safetensors",
621
+ "model.layers.51.mlp.up_proj.weight": "model-00010-of-00011.safetensors",
622
+ "model.layers.51.post_attention_layernorm.weight": "model-00010-of-00011.safetensors",
623
+ "model.layers.51.post_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
624
+ "model.layers.51.pre_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
625
+ "model.layers.51.self_attn.k_norm.weight": "model-00010-of-00011.safetensors",
626
+ "model.layers.51.self_attn.k_proj.weight": "model-00010-of-00011.safetensors",
627
+ "model.layers.51.self_attn.o_proj.weight": "model-00010-of-00011.safetensors",
628
+ "model.layers.51.self_attn.q_norm.weight": "model-00010-of-00011.safetensors",
629
+ "model.layers.51.self_attn.q_proj.weight": "model-00010-of-00011.safetensors",
630
+ "model.layers.51.self_attn.v_proj.weight": "model-00010-of-00011.safetensors",
631
+ "model.layers.52.input_layernorm.weight": "model-00010-of-00011.safetensors",
632
+ "model.layers.52.mlp.down_proj.weight": "model-00010-of-00011.safetensors",
633
+ "model.layers.52.mlp.gate_proj.weight": "model-00010-of-00011.safetensors",
634
+ "model.layers.52.mlp.up_proj.weight": "model-00010-of-00011.safetensors",
635
+ "model.layers.52.post_attention_layernorm.weight": "model-00010-of-00011.safetensors",
636
+ "model.layers.52.post_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
637
+ "model.layers.52.pre_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
638
+ "model.layers.52.self_attn.k_norm.weight": "model-00010-of-00011.safetensors",
639
+ "model.layers.52.self_attn.k_proj.weight": "model-00010-of-00011.safetensors",
640
+ "model.layers.52.self_attn.o_proj.weight": "model-00010-of-00011.safetensors",
641
+ "model.layers.52.self_attn.q_norm.weight": "model-00010-of-00011.safetensors",
642
+ "model.layers.52.self_attn.q_proj.weight": "model-00010-of-00011.safetensors",
643
+ "model.layers.52.self_attn.v_proj.weight": "model-00010-of-00011.safetensors",
644
+ "model.layers.53.input_layernorm.weight": "model-00010-of-00011.safetensors",
645
+ "model.layers.53.mlp.down_proj.weight": "model-00010-of-00011.safetensors",
646
+ "model.layers.53.mlp.gate_proj.weight": "model-00010-of-00011.safetensors",
647
+ "model.layers.53.mlp.up_proj.weight": "model-00010-of-00011.safetensors",
648
+ "model.layers.53.post_attention_layernorm.weight": "model-00010-of-00011.safetensors",
649
+ "model.layers.53.post_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
650
+ "model.layers.53.pre_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
651
+ "model.layers.53.self_attn.k_norm.weight": "model-00010-of-00011.safetensors",
652
+ "model.layers.53.self_attn.k_proj.weight": "model-00010-of-00011.safetensors",
653
+ "model.layers.53.self_attn.o_proj.weight": "model-00010-of-00011.safetensors",
654
+ "model.layers.53.self_attn.q_norm.weight": "model-00010-of-00011.safetensors",
655
+ "model.layers.53.self_attn.q_proj.weight": "model-00010-of-00011.safetensors",
656
+ "model.layers.53.self_attn.v_proj.weight": "model-00010-of-00011.safetensors",
657
+ "model.layers.54.input_layernorm.weight": "model-00010-of-00011.safetensors",
658
+ "model.layers.54.mlp.down_proj.weight": "model-00010-of-00011.safetensors",
659
+ "model.layers.54.mlp.gate_proj.weight": "model-00010-of-00011.safetensors",
660
+ "model.layers.54.mlp.up_proj.weight": "model-00010-of-00011.safetensors",
661
+ "model.layers.54.post_attention_layernorm.weight": "model-00010-of-00011.safetensors",
662
+ "model.layers.54.post_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
663
+ "model.layers.54.pre_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
664
+ "model.layers.54.self_attn.k_norm.weight": "model-00010-of-00011.safetensors",
665
+ "model.layers.54.self_attn.k_proj.weight": "model-00010-of-00011.safetensors",
666
+ "model.layers.54.self_attn.o_proj.weight": "model-00010-of-00011.safetensors",
667
+ "model.layers.54.self_attn.q_norm.weight": "model-00010-of-00011.safetensors",
668
+ "model.layers.54.self_attn.q_proj.weight": "model-00010-of-00011.safetensors",
669
+ "model.layers.54.self_attn.v_proj.weight": "model-00010-of-00011.safetensors",
670
+ "model.layers.55.input_layernorm.weight": "model-00010-of-00011.safetensors",
671
+ "model.layers.55.mlp.down_proj.weight": "model-00010-of-00011.safetensors",
672
+ "model.layers.55.mlp.gate_proj.weight": "model-00010-of-00011.safetensors",
673
+ "model.layers.55.mlp.up_proj.weight": "model-00010-of-00011.safetensors",
674
+ "model.layers.55.post_attention_layernorm.weight": "model-00010-of-00011.safetensors",
675
+ "model.layers.55.post_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
676
+ "model.layers.55.pre_feedforward_layernorm.weight": "model-00010-of-00011.safetensors",
677
+ "model.layers.55.self_attn.k_norm.weight": "model-00010-of-00011.safetensors",
678
+ "model.layers.55.self_attn.k_proj.weight": "model-00010-of-00011.safetensors",
679
+ "model.layers.55.self_attn.o_proj.weight": "model-00010-of-00011.safetensors",
680
+ "model.layers.55.self_attn.q_norm.weight": "model-00010-of-00011.safetensors",
681
+ "model.layers.55.self_attn.q_proj.weight": "model-00010-of-00011.safetensors",
682
+ "model.layers.55.self_attn.v_proj.weight": "model-00010-of-00011.safetensors",
683
+ "model.layers.56.input_layernorm.weight": "model-00011-of-00011.safetensors",
684
+ "model.layers.56.mlp.down_proj.weight": "model-00011-of-00011.safetensors",
685
+ "model.layers.56.mlp.gate_proj.weight": "model-00010-of-00011.safetensors",
686
+ "model.layers.56.mlp.up_proj.weight": "model-00011-of-00011.safetensors",
687
+ "model.layers.56.post_attention_layernorm.weight": "model-00011-of-00011.safetensors",
688
+ "model.layers.56.post_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
689
+ "model.layers.56.pre_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
690
+ "model.layers.56.self_attn.k_norm.weight": "model-00010-of-00011.safetensors",
691
+ "model.layers.56.self_attn.k_proj.weight": "model-00010-of-00011.safetensors",
692
+ "model.layers.56.self_attn.o_proj.weight": "model-00010-of-00011.safetensors",
693
+ "model.layers.56.self_attn.q_norm.weight": "model-00010-of-00011.safetensors",
694
+ "model.layers.56.self_attn.q_proj.weight": "model-00010-of-00011.safetensors",
695
+ "model.layers.56.self_attn.v_proj.weight": "model-00010-of-00011.safetensors",
696
+ "model.layers.57.input_layernorm.weight": "model-00011-of-00011.safetensors",
697
+ "model.layers.57.mlp.down_proj.weight": "model-00011-of-00011.safetensors",
698
+ "model.layers.57.mlp.gate_proj.weight": "model-00011-of-00011.safetensors",
699
+ "model.layers.57.mlp.up_proj.weight": "model-00011-of-00011.safetensors",
700
+ "model.layers.57.post_attention_layernorm.weight": "model-00011-of-00011.safetensors",
701
+ "model.layers.57.post_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
702
+ "model.layers.57.pre_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
703
+ "model.layers.57.self_attn.k_norm.weight": "model-00011-of-00011.safetensors",
704
+ "model.layers.57.self_attn.k_proj.weight": "model-00011-of-00011.safetensors",
705
+ "model.layers.57.self_attn.o_proj.weight": "model-00011-of-00011.safetensors",
706
+ "model.layers.57.self_attn.q_norm.weight": "model-00011-of-00011.safetensors",
707
+ "model.layers.57.self_attn.q_proj.weight": "model-00011-of-00011.safetensors",
708
+ "model.layers.57.self_attn.v_proj.weight": "model-00011-of-00011.safetensors",
709
+ "model.layers.58.input_layernorm.weight": "model-00011-of-00011.safetensors",
710
+ "model.layers.58.mlp.down_proj.weight": "model-00011-of-00011.safetensors",
711
+ "model.layers.58.mlp.gate_proj.weight": "model-00011-of-00011.safetensors",
712
+ "model.layers.58.mlp.up_proj.weight": "model-00011-of-00011.safetensors",
713
+ "model.layers.58.post_attention_layernorm.weight": "model-00011-of-00011.safetensors",
714
+ "model.layers.58.post_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
715
+ "model.layers.58.pre_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
716
+ "model.layers.58.self_attn.k_norm.weight": "model-00011-of-00011.safetensors",
717
+ "model.layers.58.self_attn.k_proj.weight": "model-00011-of-00011.safetensors",
718
+ "model.layers.58.self_attn.o_proj.weight": "model-00011-of-00011.safetensors",
719
+ "model.layers.58.self_attn.q_norm.weight": "model-00011-of-00011.safetensors",
720
+ "model.layers.58.self_attn.q_proj.weight": "model-00011-of-00011.safetensors",
721
+ "model.layers.58.self_attn.v_proj.weight": "model-00011-of-00011.safetensors",
722
+ "model.layers.59.input_layernorm.weight": "model-00011-of-00011.safetensors",
723
+ "model.layers.59.mlp.down_proj.weight": "model-00011-of-00011.safetensors",
724
+ "model.layers.59.mlp.gate_proj.weight": "model-00011-of-00011.safetensors",
725
+ "model.layers.59.mlp.up_proj.weight": "model-00011-of-00011.safetensors",
726
+ "model.layers.59.post_attention_layernorm.weight": "model-00011-of-00011.safetensors",
727
+ "model.layers.59.post_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
728
+ "model.layers.59.pre_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
729
+ "model.layers.59.self_attn.k_norm.weight": "model-00011-of-00011.safetensors",
730
+ "model.layers.59.self_attn.k_proj.weight": "model-00011-of-00011.safetensors",
731
+ "model.layers.59.self_attn.o_proj.weight": "model-00011-of-00011.safetensors",
732
+ "model.layers.59.self_attn.q_norm.weight": "model-00011-of-00011.safetensors",
733
+ "model.layers.59.self_attn.q_proj.weight": "model-00011-of-00011.safetensors",
734
+ "model.layers.59.self_attn.v_proj.weight": "model-00011-of-00011.safetensors",
735
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00011.safetensors",
736
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00011.safetensors",
737
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00011.safetensors",
738
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00011.safetensors",
739
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00011.safetensors",
740
+ "model.layers.6.post_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
741
+ "model.layers.6.pre_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
742
+ "model.layers.6.self_attn.k_norm.weight": "model-00002-of-00011.safetensors",
743
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00011.safetensors",
744
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00011.safetensors",
745
+ "model.layers.6.self_attn.q_norm.weight": "model-00002-of-00011.safetensors",
746
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00011.safetensors",
747
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00011.safetensors",
748
+ "model.layers.60.input_layernorm.weight": "model-00011-of-00011.safetensors",
749
+ "model.layers.60.mlp.down_proj.weight": "model-00011-of-00011.safetensors",
750
+ "model.layers.60.mlp.gate_proj.weight": "model-00011-of-00011.safetensors",
751
+ "model.layers.60.mlp.up_proj.weight": "model-00011-of-00011.safetensors",
752
+ "model.layers.60.post_attention_layernorm.weight": "model-00011-of-00011.safetensors",
753
+ "model.layers.60.post_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
754
+ "model.layers.60.pre_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
755
+ "model.layers.60.self_attn.k_norm.weight": "model-00011-of-00011.safetensors",
756
+ "model.layers.60.self_attn.k_proj.weight": "model-00011-of-00011.safetensors",
757
+ "model.layers.60.self_attn.o_proj.weight": "model-00011-of-00011.safetensors",
758
+ "model.layers.60.self_attn.q_norm.weight": "model-00011-of-00011.safetensors",
759
+ "model.layers.60.self_attn.q_proj.weight": "model-00011-of-00011.safetensors",
760
+ "model.layers.60.self_attn.v_proj.weight": "model-00011-of-00011.safetensors",
761
+ "model.layers.61.input_layernorm.weight": "model-00011-of-00011.safetensors",
762
+ "model.layers.61.mlp.down_proj.weight": "model-00011-of-00011.safetensors",
763
+ "model.layers.61.mlp.gate_proj.weight": "model-00011-of-00011.safetensors",
764
+ "model.layers.61.mlp.up_proj.weight": "model-00011-of-00011.safetensors",
765
+ "model.layers.61.post_attention_layernorm.weight": "model-00011-of-00011.safetensors",
766
+ "model.layers.61.post_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
767
+ "model.layers.61.pre_feedforward_layernorm.weight": "model-00011-of-00011.safetensors",
768
+ "model.layers.61.self_attn.k_norm.weight": "model-00011-of-00011.safetensors",
769
+ "model.layers.61.self_attn.k_proj.weight": "model-00011-of-00011.safetensors",
770
+ "model.layers.61.self_attn.o_proj.weight": "model-00011-of-00011.safetensors",
771
+ "model.layers.61.self_attn.q_norm.weight": "model-00011-of-00011.safetensors",
772
+ "model.layers.61.self_attn.q_proj.weight": "model-00011-of-00011.safetensors",
773
+ "model.layers.61.self_attn.v_proj.weight": "model-00011-of-00011.safetensors",
774
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00011.safetensors",
775
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00011.safetensors",
776
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00011.safetensors",
777
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00011.safetensors",
778
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00011.safetensors",
779
+ "model.layers.7.post_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
780
+ "model.layers.7.pre_feedforward_layernorm.weight": "model-00002-of-00011.safetensors",
781
+ "model.layers.7.self_attn.k_norm.weight": "model-00002-of-00011.safetensors",
782
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00011.safetensors",
783
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00011.safetensors",
784
+ "model.layers.7.self_attn.q_norm.weight": "model-00002-of-00011.safetensors",
785
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00011.safetensors",
786
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00011.safetensors",
787
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00011.safetensors",
788
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00011.safetensors",
789
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00011.safetensors",
790
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00011.safetensors",
791
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00011.safetensors",
792
+ "model.layers.8.post_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
793
+ "model.layers.8.pre_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
794
+ "model.layers.8.self_attn.k_norm.weight": "model-00002-of-00011.safetensors",
795
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00011.safetensors",
796
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00011.safetensors",
797
+ "model.layers.8.self_attn.q_norm.weight": "model-00002-of-00011.safetensors",
798
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00011.safetensors",
799
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00011.safetensors",
800
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00011.safetensors",
801
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00011.safetensors",
802
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00011.safetensors",
803
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00011.safetensors",
804
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00011.safetensors",
805
+ "model.layers.9.post_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
806
+ "model.layers.9.pre_feedforward_layernorm.weight": "model-00003-of-00011.safetensors",
807
+ "model.layers.9.self_attn.k_norm.weight": "model-00003-of-00011.safetensors",
808
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00011.safetensors",
809
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00011.safetensors",
810
+ "model.layers.9.self_attn.q_norm.weight": "model-00003-of-00011.safetensors",
811
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00011.safetensors",
812
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00011.safetensors",
813
+ "model.norm.weight": "model-00011-of-00011.safetensors"
814
+ }
815
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff