shimmyshimmer commited on
Commit
4ee7ba2
·
verified ·
1 Parent(s): b8b898f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +535 -21
README.md CHANGED
@@ -1,24 +1,21 @@
1
  ---
2
- base_model:
3
- - gg-hf-gm/gemma-3-270m-it
 
 
4
  license: gemma
5
  tags:
6
- - gemma3
7
  - unsloth
 
8
  - gemma
9
  - google
10
- pipeline_tag: text-generation
11
- library_name: transformers
12
- extra_gated_heading: Access Gemma on Hugging Face
13
- extra_gated_prompt: >-
14
- To access Gemma on Hugging Face, you’re required to review and agree to
15
- Google’s usage license. To do this, please ensure you’re logged in to Hugging
16
- Face and click below. Requests are processed immediately.
17
- extra_gated_button_content: Acknowledge license
18
  ---
19
  <div>
20
- <p style="margin-top: 0;margin-bottom: 0;">
21
- <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
 
 
 
22
  </p>
23
  <div style="display: flex; gap: 5px; align-items: center; ">
24
  <a href="https://github.com/unslothai/unsloth/">
@@ -27,19 +24,536 @@ extra_gated_button_content: Acknowledge license
27
  <a href="https://discord.gg/unsloth">
28
  <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
29
  </a>
30
- <a href="https://docs.unsloth.ai/">
31
  <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
32
  </a>
33
  </div>
 
34
  </div>
35
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  # Gemma 3 model card
38
 
39
- > [!Note]
40
- > This repository corresponds to the 270m **pre-trained** version of the Gemma 3 model using Quantization Aware Training (QAT).
41
- >
42
- > **The checkpoint in this repository is unquantized, please make sure to quantize with Q4_0 with your favorite tool**
43
- >
44
- > Thanks to QAT, the model is able to preserve similar quality as `bfloat16` while significantly reducing the memory requirements
45
- > to load the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: google/gemma-3-270m-it
3
+ language:
4
+ - en
5
+ library_name: transformers
6
  license: gemma
7
  tags:
 
8
  - unsloth
9
+ - gemma3
10
  - gemma
11
  - google
 
 
 
 
 
 
 
 
12
  ---
13
  <div>
14
+ <p style="margin-bottom: 0; margin-top: 0;">
15
+ <strong>See <a href="https://huggingface.co/collections/unsloth/gemma-3-67d12b7e8816ec6efa7e4e5b">our collection</a> for all versions of Gemma 3 including GGUF, 4-bit & 16-bit formats.</strong>
16
+ </p>
17
+ <p style="margin-bottom: 0;">
18
+ <em><a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-gemma-3-effectively">Read our Guide</a> to see how to Run Gemma 3 correctly.</em>
19
  </p>
20
  <div style="display: flex; gap: 5px; align-items: center; ">
21
  <a href="https://github.com/unslothai/unsloth/">
 
24
  <a href="https://discord.gg/unsloth">
25
  <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
26
  </a>
27
+ <a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device">
28
  <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
29
  </a>
30
  </div>
31
+ <h1 style="margin-top: 0rem;">✨ Fine-tune Gemma 3 with Unsloth!</h1>
32
  </div>
33
 
34
+ - Fine-tune Gemma 3 (270M) for free using our Google [Colab notebook here](https://docs.unsloth.ai/get-started/unsloth-notebooks)!
35
+ - Read our Blog about Gemma 3 support: [unsloth.ai/blog/gemma3](https://unsloth.ai/blog/gemma3)
36
+ - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
37
+
38
+
39
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
40
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
41
+ | **Gemma 3 (4B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3_(4B).ipynb) | 2x faster | 80% less |
42
+ | **Gemma-3n-E4B** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3N_(4B)-Conversational.ipynb) | 2x faster | 60% less |
43
+ | **Gemma-3n-E4B (Audio)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3N_(4B)-Audio.ipynb) | 2x faster | 60% less |
44
+ | **GRPO with Gemma 3 (1B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3_(1B)-GRPO.ipynb) | 2x faster | 80% less |
45
+ | **Gemma 3 (4B) Vision** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3_(4B)-Vision.ipynb) | 2x faster | 60% less |
46
 
47
  # Gemma 3 model card
48
 
49
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core)
50
+
51
+ **Resources and Technical Documentation**:
52
+
53
+ * [Gemma 3 Technical Report][g3-tech-report]
54
+ * [Responsible Generative AI Toolkit][rai-toolkit]
55
+ * [Gemma on Kaggle][kaggle-gemma]
56
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma3]
57
+
58
+ **Terms of Use**: [Terms][terms]
59
+
60
+ **Authors**: Google DeepMind
61
+
62
+ ## Model Information
63
+
64
+ Summary description and brief definition of inputs and outputs.
65
+
66
+ ### Description
67
+
68
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
69
+ built from the same research and technology used to create the Gemini models.
70
+ Gemma 3 models are multimodal, handling text and image input and generating text
71
+ output, with open weights for both pre-trained variants and instruction-tuned
72
+ variants. Gemma 3 has a large, 128K context window, multilingual support in over
73
+ 140 languages, and is available in more sizes than previous versions. Gemma 3
74
+ models are well-suited for a variety of text generation and image understanding
75
+ tasks, including question answering, summarization, and reasoning. Their
76
+ relatively small size makes it possible to deploy them in environments with
77
+ limited resources such as laptops, desktops or your own cloud infrastructure,
78
+ democratizing access to state of the art AI models and helping foster innovation
79
+ for everyone.
80
+
81
+ ### Inputs and outputs
82
+
83
+ - **Input:**
84
+ - Text string, such as a question, a prompt, or a document to be summarized
85
+ - Images, normalized to 896 x 896 resolution and encoded to 256 tokens
86
+ each
87
+ - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and
88
+ 32K tokens for the 1B and 270M sizes.
89
+
90
+ - **Output:**
91
+ - Generated text in response to the input, such as an answer to a
92
+ question, analysis of image content, or a summary of a document
93
+ - Total output context up to 128K tokens for the 4B, 12B, and 27B sizes,
94
+ and 32K tokens for the 1B and 270M sizes per request, subtracting the
95
+ request input tokens
96
+
97
+ ### Citation
98
+
99
+ ```none
100
+ @article{gemma_2025,
101
+ title={Gemma 3},
102
+ url={https://arxiv.org/abs/2503.19786},
103
+ publisher={Google DeepMind},
104
+ author={Gemma Team},
105
+ year={2025}
106
+ }
107
+ ```
108
+
109
+ ## Model Data
110
+
111
+ Data used for model training and how the data was processed.
112
+
113
+ ### Training Dataset
114
+
115
+ These models were trained on a dataset of text data that includes a wide variety
116
+ of sources. The 27B model was trained with 14 trillion tokens, the 12B model was
117
+ trained with 12 trillion tokens, 4B model was trained with 4 trillion tokens,
118
+ the 1B with 2 trillion tokens, and the 270M with 6 trillion tokens. The
119
+ knowledge cutoff date for the training data was August 2024. Here are the key
120
+ components:
121
+
122
+ - Web Documents: A diverse collection of web text ensures the model is
123
+ exposed to a broad range of linguistic styles, topics, and vocabulary. The
124
+ training dataset includes content in over 140 languages.
125
+ - Code: Exposing the model to code helps it to learn the syntax and
126
+ patterns of programming languages, which improves its ability to generate
127
+ code and understand code-related questions.
128
+ - Mathematics: Training on mathematical text helps the model learn logical
129
+ reasoning, symbolic representation, and to address mathematical queries.
130
+ - Images: A wide range of images enables the model to perform image
131
+ analysis and visual data extraction tasks.
132
+
133
+ The combination of these diverse data sources is crucial for training a powerful
134
+ multimodal model that can handle a wide variety of different tasks and data
135
+ formats.
136
+
137
+ ### Data Preprocessing
138
+
139
+ Here are the key data cleaning and filtering methods applied to the training
140
+ data:
141
+
142
+ - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering
143
+ was applied at multiple stages in the data preparation process to ensure
144
+ the exclusion of harmful and illegal content.
145
+ - Sensitive Data Filtering: As part of making Gemma pre-trained models
146
+ safe and reliable, automated techniques were used to filter out certain
147
+ personal information and other sensitive data from training sets.
148
+ - Additional methods: Filtering based on content quality and safety in
149
+ line with [our policies][safety-policies].
150
+
151
+ ## Implementation Information
152
+
153
+ Details about the model internals.
154
+
155
+ ### Hardware
156
+
157
+ Gemma was trained using [Tensor Processing Unit (TPU)][tpu] hardware (TPUv4p,
158
+ TPUv5p and TPUv5e). Training vision-language models (VLMS) requires significant
159
+ computational power. TPUs, designed specifically for matrix operations common in
160
+ machine learning, offer several advantages in this domain:
161
+
162
+ - Performance: TPUs are specifically designed to handle the massive
163
+ computations involved in training VLMs. They can speed up training
164
+ considerably compared to CPUs.
165
+ - Memory: TPUs often come with large amounts of high-bandwidth memory,
166
+ allowing for the handling of large models and batch sizes during training.
167
+ This can lead to better model quality.
168
+ - Scalability: TPU Pods (large clusters of TPUs) provide a scalable
169
+ solution for handling the growing complexity of large foundation models.
170
+ You can distribute training across multiple TPU devices for faster and more
171
+ efficient processing.
172
+ - Cost-effectiveness: In many scenarios, TPUs can provide a more
173
+ cost-effective solution for training large models compared to CPU-based
174
+ infrastructure, especially when considering the time and resources saved
175
+ due to faster training.
176
+ - These advantages are aligned with
177
+ [Google's commitments to operate sustainably][sustainability].
178
+
179
+ ### Software
180
+
181
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
182
+
183
+ JAX allows researchers to take advantage of the latest generation of hardware,
184
+ including TPUs, for faster and more efficient training of large models. ML
185
+ Pathways is Google's latest effort to build artificially intelligent systems
186
+ capable of generalizing across multiple tasks. This is specially suitable for
187
+ foundation models, including large language models like these ones.
188
+
189
+ Together, JAX and ML Pathways are used as described in the
190
+ [paper about the Gemini family of models][gemini-2-paper]; *"the 'single
191
+ controller' programming model of Jax and Pathways allows a single Python
192
+ process to orchestrate the entire training run, dramatically simplifying the
193
+ development workflow."*
194
+
195
+ ## Evaluation
196
+
197
+ Model evaluation metrics and results.
198
+
199
+ ### Benchmark Results
200
+
201
+ These models were evaluated against a large collection of different datasets and
202
+ metrics to cover different aspects of text generation. Evaluation results marked
203
+ with **IT** are for instruction-tuned models. Evaluation results marked with
204
+ **PT** are for pre-trained models.
205
+
206
+ #### Gemma 3 270M
207
+
208
+ | **Benchmark** | **n-shot** | **Gemma 3 PT 270M** |
209
+ | :------------------------ | :-----------: | ------------------: |
210
+ | [HellaSwag][hellaswag] | 10-shot | 40.9 |
211
+ | [BoolQ][boolq] | 0-shot | 61.4 |
212
+ | [PIQA][piqa] | 0-shot | 67.7 |
213
+ | [TriviaQA][triviaqa] | 5-shot | 15.4 |
214
+ | [ARC-c][arc] | 25-shot | 29.0 |
215
+ | [ARC-e][arc] | 0-shot | 57.7 |
216
+ | [WinoGrande][winogrande] | 5-shot | 52.0 |
217
+
218
+ [hellaswag]: https://arxiv.org/abs/1905.07830
219
+ [boolq]: https://arxiv.org/abs/1905.10044
220
+ [piqa]: https://arxiv.org/abs/1911.11641
221
+ [triviaqa]: https://arxiv.org/abs/1705.03551
222
+ [arc]: https://arxiv.org/abs/1911.01547
223
+ [winogrande]: https://arxiv.org/abs/1907.10641
224
+
225
+ | **Benchmark** | **n-shot** | **Gemma 3 IT 270m** |
226
+ | :------------------------ | :-----------: | ------------------: |
227
+ | [HellaSwag][hellaswag] | 0-shot | 37.7 |
228
+ | [PIQA][piqa] | 0-shot | 66.2 |
229
+ | [ARC-c][arc] | 0-shot | 28.2 |
230
+ | [WinoGrande][winogrande] | 0-shot | 52.3 |
231
+ | [BIG-Bench Hard][bbh] | few-shot | 26.7 |
232
+ | [IF Eval][ifeval] | 0-shot | 51.2 |
233
+
234
+ [hellaswag]: https://arxiv.org/abs/1905.07830
235
+ [piqa]: https://arxiv.org/abs/1911.11641
236
+ [arc]: https://arxiv.org/abs/1911.01547
237
+ [winogrande]: https://arxiv.org/abs/1907.10641
238
+ [bbh]: https://paperswithcode.com/dataset/bbh
239
+ [bbh]: https://paperswithcode.com/dataset/bbh
240
+ [ifeval]: https://arxiv.org/abs/2311.07911
241
+
242
+ #### Gemma 3 1B, 4B, 12B & 27B
243
+
244
+ ##### Reasoning and factuality
245
+
246
+ | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B |
247
+ |--------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:|
248
+ | [GPQA][gpqa] Diamond | 0-shot | 19.2 | 30.8 | 40.9 | 42.4 |
249
+ | [SimpleQA][simpleqa] | 0-shot | 2.2 | 4.0 | 6.3 | 10.0 |
250
+ | [FACTS Grounding][facts-grdg] | - | 36.4 | 70.1 | 75.8 | 74.9 |
251
+ | [BIG-Bench Hard][bbh] | 0-shot | 39.1 | 72.2 | 85.7 | 87.6 |
252
+ | [BIG-Bench Extra Hard][bbeh] | 0-shot | 7.2 | 11.0 | 16.3 | 19.3 |
253
+ | [IFEval][ifeval] | 0-shot | 80.2 | 90.2 | 88.9 | 90.4 |
254
+
255
+ | Benchmark | n-shot | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
256
+ | ------------------------------ |----------|:--------------:|:-------------:|:--------------:|:--------------:|
257
+ | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 |
258
+ | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 |
259
+ | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 |
260
+ | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 |
261
+ | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 |
262
+ | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 |
263
+ | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 |
264
+ | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 |
265
+ | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 |
266
+ | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 |
267
+ | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 |
268
+
269
+ [gpqa]: https://arxiv.org/abs/2311.12022
270
+ [simpleqa]: https://arxiv.org/abs/2411.04368
271
+ [facts-grdg]: https://goo.gle/FACTS_paper
272
+ [bbeh]: https://github.com/google-deepmind/bbeh
273
+ [ifeval]: https://arxiv.org/abs/2311.07911
274
+ [hellaswag]: https://arxiv.org/abs/1905.07830
275
+ [boolq]: https://arxiv.org/abs/1905.10044
276
+ [piqa]: https://arxiv.org/abs/1911.11641
277
+ [socialiqa]: https://arxiv.org/abs/1904.09728
278
+ [triviaqa]: https://arxiv.org/abs/1705.03551
279
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
280
+ [arc]: https://arxiv.org/abs/1911.01547
281
+ [winogrande]: https://arxiv.org/abs/1907.10641
282
+ [bbh]: https://paperswithcode.com/dataset/bbh
283
+ [drop]: https://arxiv.org/abs/1903.00161
284
+
285
+ ##### STEM and code
286
+
287
+ | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B |
288
+ |----------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:|
289
+ | [MMLU][mmlu] (Pro) | 0-shot | 14.7 | 43.6 | 60.6 | 67.5 |
290
+ | [LiveCodeBench][lcb] | 0-shot | 1.9 | 12.6 | 24.6 | 29.7 |
291
+ | [Bird-SQL][bird-sql] (dev) | - | 6.4 | 36.3 | 47.9 | 54.4 |
292
+ | [Math][math] | 0-shot | 48.0 | 75.6 | 83.8 | 89.0 |
293
+ | HiddenMath | 0-shot | 15.8 | 43.0 | 54.5 | 60.3 |
294
+ | [MBPP][mbpp] | 3-shot | 35.2 | 63.2 | 73.0 | 74.4 |
295
+ | [HumanEval][humaneval] | 0-shot | 41.5 | 71.3 | 85.4 | 87.8 |
296
+ | [Natural2Code][nat2code] | 0-shot | 56.0 | 70.3 | 80.7 | 84.5 |
297
+ | [GSM8K][gsm8k] | 0-shot | 62.8 | 89.2 | 94.4 | 95.9 |
298
+
299
+ | Benchmark | n-shot | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
300
+ | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:|
301
+ | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 |
302
+ | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 |
303
+ | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 |
304
+ | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 |
305
+ | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 |
306
+ | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 |
307
+ | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 |
308
+ | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 |
309
+
310
+ [mmlu]: https://arxiv.org/abs/2009.03300
311
+ [agieval]: https://arxiv.org/abs/2304.06364
312
+ [math]: https://arxiv.org/abs/2103.03874
313
+ [gsm8k]: https://arxiv.org/abs/2110.14168
314
+ [gpqa]: https://arxiv.org/abs/2311.12022
315
+ [mbpp]: https://arxiv.org/abs/2108.07732
316
+ [humaneval]: https://arxiv.org/abs/2107.03374
317
+ [lcb]: https://arxiv.org/abs/2403.07974
318
+ [bird-sql]: https://arxiv.org/abs/2305.03111
319
+ [nat2code]: https://arxiv.org/abs/2405.04520
320
+
321
+ #### Multilingual
322
+
323
+ | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B |
324
+ |--------------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:|
325
+ | [Global-MMLU-Lite][global-mmlu-lite] | 0-shot | 34.2 | 54.5 | 69.5 | 75.1 |
326
+ | [ECLeKTic][eclektic] | 0-shot | 1.4 | 4.6 | 10.3 | 16.7 |
327
+ | [WMT24++][wmt24pp] | 0-shot | 35.9 | 46.8 | 51.6 | 53.4 |
328
+
329
+ | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
330
+ | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:|
331
+ | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 |
332
+ | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 |
333
+ | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 |
334
+ | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 |
335
+ | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 |
336
+ | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 |
337
+ | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 |
338
+
339
+ [mgsm]: https://arxiv.org/abs/2210.03057
340
+ [flores]: https://arxiv.org/abs/2106.03193
341
+ [xquad]: https://arxiv.org/abs/1910.11856v3
342
+ [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite
343
+ [wmt24pp]: https://arxiv.org/abs/2502.12404v1
344
+ [eclektic]: https://arxiv.org/abs/2502.21228
345
+ [indicgenbench]: https://arxiv.org/abs/2404.16816
346
+
347
+ ##### Multimodal
348
+
349
+ | Benchmark | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B |
350
+ |-----------------------------------|:-------------:|:--------------:|:--------------:|
351
+ | [MMMU][mmmu] (val) | 48.8 | 59.6 | 64.9 |
352
+ | [DocVQA][docvqa] | 75.8 | 87.1 | 86.6 |
353
+ | [InfoVQA][info-vqa] | 50.0 | 64.9 | 70.6 |
354
+ | [TextVQA][textvqa] | 57.8 | 67.7 | 65.1 |
355
+ | [AI2D][ai2d] | 74.8 | 84.2 | 84.5 |
356
+ | [ChartQA][chartqa] | 68.8 | 75.7 | 78.0 |
357
+ | [VQAv2][vqav2] (val) | 62.4 | 71.6 | 71.0 |
358
+ | [MathVista][mathvista] (testmini) | 50.0 | 62.9 | 67.6 |
359
+
360
+ | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B |
361
+ | ------------------------------ |:-------------:|:--------------:|:--------------:|
362
+ | [COCOcap][coco-cap] | 102 | 111 | 116 |
363
+ | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 |
364
+ | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 |
365
+ | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 |
366
+ | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 |
367
+ | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 |
368
+ | [ReMI][remi] | 27.3 | 38.5 | 44.8 |
369
+ | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 |
370
+ | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 |
371
+ | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 |
372
+ | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 |
373
+ | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 |
374
+ | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 |
375
+ | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 |
376
+ | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 |
377
+
378
+ [coco-cap]: https://cocodataset.org/#home
379
+ [docvqa]: https://www.docvqa.org/
380
+ [info-vqa]: https://arxiv.org/abs/2104.12756
381
+ [mmmu]: https://arxiv.org/abs/2311.16502
382
+ [textvqa]: https://textvqa.org/
383
+ [realworldqa]: https://paperswithcode.com/dataset/realworldqa
384
+ [remi]: https://arxiv.org/html/2406.09175v1
385
+ [ai2d]: https://allenai.org/data/diagrams
386
+ [chartqa]: https://arxiv.org/abs/2203.10244
387
+ [vqav2]: https://visualqa.org/index.html
388
+ [blinkvqa]: https://arxiv.org/abs/2404.12390
389
+ [okvqa]: https://okvqa.allenai.org/
390
+ [tallyqa]: https://arxiv.org/abs/1810.12440
391
+ [ss-vqa]: https://arxiv.org/abs/1908.02660
392
+ [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/
393
+ [mathvista]: https://arxiv.org/abs/2310.02255
394
+
395
+ ## Ethics and Safety
396
+
397
+ Ethics and safety evaluation approach and results.
398
+
399
+ ### Evaluation Approach
400
+
401
+ Our evaluation methods include structured evaluations and internal red-teaming
402
+ testing of relevant content policies. Red-teaming was conducted by a number of
403
+ different teams, each with different goals and human evaluation metrics. These
404
+ models were evaluated against a number of different categories relevant to
405
+ ethics and safety, including:
406
+
407
+ - **Child Safety**: Evaluation of text-to-text and image to text prompts
408
+ covering child safety policies, including child sexual abuse and
409
+ exploitation.
410
+ - **Content Safety:** Evaluation of text-to-text and image to text prompts
411
+ covering safety policies including, harassment, violence and gore, and hate
412
+ speech.
413
+ - **Representational Harms**: Evaluation of text-to-text and image to text
414
+ prompts covering safety policies including bias, stereotyping, and harmful
415
+ associations or inaccuracies.
416
+
417
+ In addition to development level evaluations, we conduct "assurance
418
+ evaluations" which are our 'arms-length' internal evaluations for responsibility
419
+ governance decision making. They are conducted separately from the model
420
+ development team, to inform decision making about release. High level findings
421
+ are fed back to the model team, but prompt sets are held-out to prevent
422
+ overfitting and preserve the results' ability to inform decision making.
423
+ Assurance evaluation results are reported to our Responsibility & Safety Council
424
+ as part of release review.
425
+
426
+ ### Evaluation Results
427
+
428
+ For all areas of safety testing, we saw major improvements in the categories of
429
+ child safety, content safety, and representational harms relative to previous
430
+ Gemma models. All testing was conducted without safety filters to evaluate the
431
+ model capabilities and behaviors. For both text-to-text and image-to-text, and
432
+ across all model sizes, the model produced minimal policy violations, and showed
433
+ significant improvements over previous Gemma models' performance with respect
434
+ to ungrounded inferences. A limitation of our evaluations was they included only
435
+ English language prompts.
436
+
437
+ ## Usage and Limitations
438
+
439
+ These models have certain limitations that users should be aware of.
440
+
441
+ ### Intended Usage
442
+
443
+ Open vision-language models (VLMs) models have a wide range of applications
444
+ across various industries and domains. The following list of potential uses is
445
+ not comprehensive. The purpose of this list is to provide contextual information
446
+ about the possible use-cases that the model creators considered as part of model
447
+ training and development.
448
+
449
+ - Content Creation and Communication
450
+ - Text Generation: These models can be used to generate creative text
451
+ formats such as poems, scripts, code, marketing copy, and email drafts.
452
+ - Chatbots and Conversational AI: Power conversational interfaces
453
+ for customer service, virtual assistants, or interactive applications.
454
+ - Text Summarization: Generate concise summaries of a text corpus,
455
+ research papers, or reports.
456
+ - Image Data Extraction: These models can be used to extract,
457
+ interpret, and summarize visual data for text communications.
458
+ - Research and Education
459
+ - Natural Language Processing (NLP) and VLM Research: These
460
+ models can serve as a foundation for researchers to experiment with VLM
461
+ and NLP techniques, develop algorithms, and contribute to the
462
+ advancement of the field.
463
+ - Language Learning Tools: Support interactive language learning
464
+ experiences, aiding in grammar correction or providing writing practice.
465
+ - Knowledge Exploration: Assist researchers in exploring large
466
+ bodies of text by generating summaries or answering questions about
467
+ specific topics.
468
+
469
+ ### Limitations
470
+
471
+ - Training Data
472
+ - The quality and diversity of the training data significantly
473
+ influence the model's capabilities. Biases or gaps in the training data
474
+ can lead to limitations in the model's responses.
475
+ - The scope of the training dataset determines the subject areas
476
+ the model can handle effectively.
477
+ - Context and Task Complexity
478
+ - Models are better at tasks that can be framed with clear
479
+ prompts and instructions. Open-ended or highly complex tasks might be
480
+ challenging.
481
+ - A model's performance can be influenced by the amount of context
482
+ provided (longer context generally leads to better outputs, up to a
483
+ certain point).
484
+ - Language Ambiguity and Nuance
485
+ - Natural language is inherently complex. Models might struggle
486
+ to grasp subtle nuances, sarcasm, or figurative language.
487
+ - Factual Accuracy
488
+ - Models generate responses based on information they learned
489
+ from their training datasets, but they are not knowledge bases. They
490
+ may generate incorrect or outdated factual statements.
491
+ - Common Sense
492
+ - Models rely on statistical patterns in language. They might
493
+ lack the ability to apply common sense reasoning in certain situations.
494
+
495
+ ### Ethical Considerations and Risks
496
+
497
+ The development of vision-language models (VLMs) raises several ethical
498
+ concerns. In creating an open model, we have carefully considered the following:
499
+
500
+ - Bias and Fairness
501
+ - VLMs trained on large-scale, real-world text and image data can
502
+ reflect socio-cultural biases embedded in the training material. These
503
+ models underwent careful scrutiny, input data pre-processing described
504
+ and posterior evaluations reported in this card.
505
+ - Misinformation and Misuse
506
+ - VLMs can be misused to generate text that is false, misleading,
507
+ or harmful.
508
+ - Guidelines are provided for responsible use with the model, see the
509
+ [Responsible Generative AI Toolkit][rai-toolkit].
510
+ - Transparency and Accountability:
511
+ - This model card summarizes details on the models' architecture,
512
+ capabilities, limitations, and evaluation processes.
513
+ - A responsibly developed open model offers the opportunity to
514
+ share innovation by making VLM technology accessible to developers and
515
+ researchers across the AI ecosystem.
516
+
517
+ Risks identified and mitigations:
518
+
519
+ - **Perpetuation of biases**: It's encouraged to perform continuous
520
+ monitoring (using evaluation metrics, human review) and the exploration of
521
+ de-biasing techniques during model training, fine-tuning, and other use
522
+ cases.
523
+ - **Generation of harmful content**: Mechanisms and guidelines for content
524
+ safety are essential. Developers are encouraged to exercise caution and
525
+ implement appropriate content safety safeguards based on their specific
526
+ product policies and application use cases.
527
+ - **Misuse for malicious purposes**: Technical limitations and developer
528
+ and end-user education can help mitigate against malicious applications of
529
+ VLMs. Educational resources and reporting mechanisms for users to flag
530
+ misuse are provided. Prohibited uses of Gemma models are outlined in the
531
+ [Gemma Prohibited Use Policy][prohibited-use].
532
+ - **Privacy violations**: Models were trained on data filtered for removal
533
+ of certain personal information and other sensitive data. Developers are
534
+ encouraged to adhere to privacy regulations with privacy-preserving
535
+ techniques.
536
+
537
+ ### Benefits
538
+
539
+ At the time of release, this family of models provides high-performance open
540
+ vision-language model implementations designed from the ground up for
541
+ responsible AI development compared to similarly sized models.
542
+
543
+ Using the benchmark evaluation metrics described in this document, these models
544
+ have shown to provide superior performance to other, comparably-sized open model
545
+ alternatives.
546
+
547
+ [g3-tech-report]: https://arxiv.org/abs/2503.19786
548
+ [rai-toolkit]: https://ai.google.dev/responsible
549
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3
550
+ [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3
551
+ [terms]: https://ai.google.dev/gemma/terms
552
+ [safety-policies]: https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf
553
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
554
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
555
+ [sustainability]: https://sustainability.google/operating-sustainably/
556
+ [jax]: https://github.com/jax-ml/jax
557
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
558
+ [sustainability]: https://sustainability.google/operating-sustainably/
559
+ [gemini-2-paper]: https://arxiv.org/abs/2312.11805