Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,277 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- unsloth
|
4 |
+
license: mit
|
5 |
+
library_name: transformers
|
6 |
+
base_model:
|
7 |
+
- deepcogito/cogito-v2-preview-deepseek-671B-MoE
|
8 |
+
---
|
9 |
+
> [!NOTE]
|
10 |
+
> Includes Unsloth **chat template fixes**! <br> For `llama.cpp`, use `--jinja`
|
11 |
+
>
|
12 |
+
|
13 |
+
<div>
|
14 |
+
<p style="margin-top: 0;margin-bottom: 0;">
|
15 |
+
<em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
|
16 |
+
</p>
|
17 |
+
<div style="display: flex; gap: 5px; align-items: center; ">
|
18 |
+
<a href="https://github.com/unslothai/unsloth/">
|
19 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
|
20 |
+
</a>
|
21 |
+
<a href="https://discord.gg/unsloth">
|
22 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
|
23 |
+
</a>
|
24 |
+
<a href="https://docs.unsloth.ai/">
|
25 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
|
26 |
+
</a>
|
27 |
+
</div>
|
28 |
+
</div>
|
29 |
+
|
30 |
+
|
31 |
+
<p align="center">
|
32 |
+
<img src="images/deep-cogito-logo.png" alt="Logo" width="40%">
|
33 |
+
</p>
|
34 |
+
|
35 |
+
|
36 |
+
# Cogito v2 preview - 671B MoE
|
37 |
+
|
38 |
+
[Blog Post](https://www.deepcogito.com/research/cogito-v2-preview)
|
39 |
+
|
40 |
+
The Cogito v2 LLMs are instruction tuned generative models. All models are released under an open license for commercial use.
|
41 |
+
|
42 |
+
- Cogito v2 models are hybrid reasoning models. Each model can answer directly (standard LLM), or self-reflect before answering (like reasoning models).
|
43 |
+
- The LLMs are trained using **Iterated Distillation and Amplification (IDA)** - an scalable and efficient alignment strategy for superintelligence using iterative self-improvement.
|
44 |
+
- The models have been optimized for coding, STEM, instruction following and general helpfulness, and have significantly higher multilingual, coding and tool calling capabilities than size equivalent counterparts.
|
45 |
+
- In both standard and reasoning modes, Cogito v2-preview models outperform their size equivalent counterparts on common industry benchmarks.
|
46 |
+
- This model is trained in over 30 languages and supports a context length of 128k.
|
47 |
+
|
48 |
+
# Evaluations
|
49 |
+
For detailed evaluations, please refer to the [Blog Post](https://www.deepcogito.com/research/cogito-v2-preview).
|
50 |
+
|
51 |
+
|
52 |
+
# Usage
|
53 |
+
Here is a snippet below for usage with Transformers:
|
54 |
+
|
55 |
+
```python
|
56 |
+
import transformers
|
57 |
+
import torch
|
58 |
+
|
59 |
+
model_id = "deepcogito/cogito-v2-preview-deepseek-671B-MoE"
|
60 |
+
|
61 |
+
pipeline = transformers.pipeline(
|
62 |
+
"text-generation",
|
63 |
+
model=model_id,
|
64 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
65 |
+
device_map="auto",
|
66 |
+
)
|
67 |
+
|
68 |
+
messages = [
|
69 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
70 |
+
{"role": "user", "content": "Give me a short introduction to LLMs."},
|
71 |
+
]
|
72 |
+
|
73 |
+
outputs = pipeline(
|
74 |
+
messages,
|
75 |
+
max_new_tokens=512,
|
76 |
+
)
|
77 |
+
|
78 |
+
print(outputs[0]["generated_text"][-1])
|
79 |
+
```
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
## Implementing extended thinking
|
84 |
+
- By default, the model will answer in the standard mode.
|
85 |
+
- To enable thinking, you can do any one of the two methods:
|
86 |
+
- Set `enable_thinking=True` while applying the chat template.
|
87 |
+
- Add a specific system prompt, along with prefilling the response with "\<think\>\n".
|
88 |
+
|
89 |
+
**NOTE: Unlike Cogito v1 models, we initiate the response with "\<think\>\n" at the beginning of every output when reasoning is enabled. This is because hybrid models can be brittle at times, and adding a "\<think\>\n" ensures that the model does indeed respect thinking.**
|
90 |
+
|
91 |
+
### Method 1 - Set enable_thinking=True in the tokenizer
|
92 |
+
If you are using Huggingface tokenizers, then you can simply use add the argument `enable_thinking=True` to the tokenization (this option is added to the chat template).
|
93 |
+
|
94 |
+
Here is an example -
|
95 |
+
```python
|
96 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
97 |
+
|
98 |
+
model_name = "deepcogito/cogito-v2-preview-deepseek-671B-MoE"
|
99 |
+
|
100 |
+
model = AutoModelForCausalLM.from_pretrained(
|
101 |
+
model_name,
|
102 |
+
torch_dtype="auto",
|
103 |
+
device_map="auto"
|
104 |
+
)
|
105 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
106 |
+
|
107 |
+
prompt = "Give me a short introduction to LLMs."
|
108 |
+
messages = [
|
109 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
110 |
+
{"role": "user", "content": prompt}
|
111 |
+
]
|
112 |
+
|
113 |
+
text = tokenizer.apply_chat_template(
|
114 |
+
messages,
|
115 |
+
tokenize=False,
|
116 |
+
add_generation_prompt=True,
|
117 |
+
enable_thinking=True
|
118 |
+
)
|
119 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
120 |
+
|
121 |
+
generated_ids = model.generate(
|
122 |
+
**model_inputs,
|
123 |
+
max_new_tokens=512
|
124 |
+
)
|
125 |
+
generated_ids = [
|
126 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
127 |
+
]
|
128 |
+
|
129 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
130 |
+
print(response)
|
131 |
+
```
|
132 |
+
|
133 |
+
### Method 2 - Add a specific system prompt, along with prefilling the response with "\<think\>\n".
|
134 |
+
To enable thinking using this method, you need to do two parts -
|
135 |
+
|
136 |
+
|
137 |
+
Step 1 - Simply use this in the system prompt `system_instruction = 'Enable deep thinking subroutine.'`
|
138 |
+
|
139 |
+
If you already have a system_instruction, then use `system_instruction = 'Enable deep thinking subroutine.' + '\n\n' + system_instruction`.
|
140 |
+
|
141 |
+
Step 2 - Prefil the response with the tokens `"<think>\n"`.
|
142 |
+
|
143 |
+
Here is an example -
|
144 |
+
|
145 |
+
```python
|
146 |
+
import transformers
|
147 |
+
import torch
|
148 |
+
|
149 |
+
model_name = "deepcogito/cogito-v2-preview-deepseek-671B-MoE"
|
150 |
+
|
151 |
+
model = AutoModelForCausalLM.from_pretrained(
|
152 |
+
model_name,
|
153 |
+
torch_dtype="auto",
|
154 |
+
device_map="auto"
|
155 |
+
)
|
156 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
157 |
+
|
158 |
+
# Step 1 - Add deep thinking instruction.
|
159 |
+
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
|
160 |
+
|
161 |
+
messages = [
|
162 |
+
{"role": "system", "content": DEEP_THINKING_INSTRUCTION},
|
163 |
+
{"role": "user", "content": "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."},
|
164 |
+
]
|
165 |
+
|
166 |
+
text = tokenizer.apply_chat_template(
|
167 |
+
messages,
|
168 |
+
tokenize=False,
|
169 |
+
add_generation_prompt=True
|
170 |
+
)
|
171 |
+
|
172 |
+
# Step 2 - Prefill response with "<think>\n".
|
173 |
+
text += "<think>\n"
|
174 |
+
|
175 |
+
# Now, continue as usual.
|
176 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
177 |
+
|
178 |
+
generated_ids = model.generate(
|
179 |
+
**model_inputs,
|
180 |
+
max_new_tokens=512
|
181 |
+
)
|
182 |
+
generated_ids = [
|
183 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
184 |
+
]
|
185 |
+
|
186 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
187 |
+
print(response)
|
188 |
+
```
|
189 |
+
|
190 |
+
|
191 |
+
Similarly, if you have a system prompt, you can append the `DEEP_THINKING_INSTRUCTION` to the beginning in this way -
|
192 |
+
|
193 |
+
```python
|
194 |
+
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
|
195 |
+
|
196 |
+
system_prompt = "Reply to each prompt with only the actual code - no explanations."
|
197 |
+
prompt = "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."
|
198 |
+
|
199 |
+
messages = [
|
200 |
+
{"role": "system", "content": DEEP_THINKING_INSTRUCTION + '\n\n' + system_prompt},
|
201 |
+
{"role": "user", "content": prompt}
|
202 |
+
]
|
203 |
+
```
|
204 |
+
|
205 |
+
|
206 |
+
# Tool Calling
|
207 |
+
Cogito models support tool calling (single, parallel, multiple and parallel_multiple) both in standard and extended thinking mode.
|
208 |
+
|
209 |
+
Here is a snippet -
|
210 |
+
|
211 |
+
```python
|
212 |
+
# First, define a tool
|
213 |
+
def get_current_temperature(location: str) -> float:
|
214 |
+
"""
|
215 |
+
Get the current temperature at a location.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
location: The location to get the temperature for, in the format "City, Country"
|
219 |
+
Returns:
|
220 |
+
The current temperature at the specified location in the specified units, as a float.
|
221 |
+
"""
|
222 |
+
return 22. # A real function should probably actually get the temperature!
|
223 |
+
|
224 |
+
# Next, create a chat and apply the chat template
|
225 |
+
messages = [
|
226 |
+
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
|
227 |
+
]
|
228 |
+
|
229 |
+
model_inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
|
230 |
+
|
231 |
+
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
|
232 |
+
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
|
233 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
234 |
+
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
|
235 |
+
print(output_text)
|
236 |
+
```
|
237 |
+
|
238 |
+
This will result in the output -
|
239 |
+
```
|
240 |
+
<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_current_temperature
|
241 |
+
```json
|
242 |
+
{"location":"Paris, France"}
|
243 |
+
```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>
|
244 |
+
```
|
245 |
+
|
246 |
+
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
|
247 |
+
|
248 |
+
```python
|
249 |
+
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
250 |
+
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
|
251 |
+
```
|
252 |
+
|
253 |
+
and then call the tool and append the result, with the `tool` role, like so:
|
254 |
+
|
255 |
+
```python
|
256 |
+
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
|
257 |
+
```
|
258 |
+
|
259 |
+
After that, you can `generate()` again to let the model use the tool result in the chat:
|
260 |
+
|
261 |
+
```python
|
262 |
+
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
|
263 |
+
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
|
264 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
265 |
+
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
|
266 |
+
```
|
267 |
+
|
268 |
+
This should result in the string -
|
269 |
+
```
|
270 |
+
'The current temperature in Paris is 22.0 degrees.<|end▁of▁sentence|>'
|
271 |
+
```
|
272 |
+
|
273 |
+
## License
|
274 |
+
This repository and the model weights are licensed under **MIT License**.
|
275 |
+
|
276 |
+
## Contact
|
277 |
+
If you would like to reach out to our team, send an email to [[email protected]]([email protected]).
|