---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507/blob/main/LICENSE
base_model:
- Qwen/Qwen3-4B-Instruct-2507
tags:
- qwen
- qwen3
- unsloth
---
- Fine-tune Qwen3 (14B) for free using our Google [Colab notebook here](https://docs.unsloth.ai/get-started/unsloth-notebooks)!
- Read our Blog about Qwen3 support: [unsloth.ai/blog/qwen3](https://unsloth.ai/blog/qwen3)
- View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
- Run & export your fine-tuned model to Ollama, llama.cpp or HF.
| Unsloth supports | Free Notebooks | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Qwen3 (14B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 3x faster | 70% less |
| **GRPO with Qwen3 (8B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 3x faster | 80% less |
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
# Qwen3-4B-Instruct-2507
## Highlights
We introduce the updated version of the **Qwen3-4B non-thinking mode**, named **Qwen3-4B-Instruct-2507**, featuring the following key enhancements:
- **Significant improvements** in general capabilities, including **instruction following, logical reasoning, text comprehension, mathematics, science, coding and tool usage**.
- **Substantial gains** in long-tail knowledge coverage across **multiple languages**.
- **Markedly better alignment** with user preferences in **subjective and open-ended tasks**, enabling more helpful responses and higher-quality text generation.
- **Enhanced capabilities** in **256K long-context understanding**.

## Model Overview
**Qwen3-4B-Instruct-2507** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 4.0B
- Number of Paramaters (Non-Embedding): 3.6B
- Number of Layers: 36
- Number of Attention Heads (GQA): 32 for Q and 8 for KV
- Context Length: **262,144 natively**.
**NOTE: This model supports only non-thinking mode and does not generate ```` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.**
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Performance
| | GPT-4.1-nano-2025-04-14 | Qwen3-30B-A3B Non-Thinking | Qwen3-4B Non-Thinking | Qwen3-4B-Instruct-2507 |
|--- | --- | --- | --- | --- |
| **Knowledge** | | | |
| MMLU-Pro | 62.8 | 69.1 | 58.0 | **69.6** |
| MMLU-Redux | 80.2 | 84.1 | 77.3 | **84.2** |
| GPQA | 50.3 | 54.8 | 41.7 | **62.0** |
| SuperGPQA | 32.2 | 42.2 | 32.0 | **42.8** |
| **Reasoning** | | | |
| AIME25 | 22.7 | 21.6 | 19.1 | **47.4** |
| HMMT25 | 9.7 | 12.0 | 12.1 | **31.0** |
| ZebraLogic | 14.8 | 33.2 | 35.2 | **80.2** |
| LiveBench 20241125 | 41.5 | 59.4 | 48.4 | **63.0** |
| **Coding** | | | |
| LiveCodeBench v6 (25.02-25.05) | 31.5 | 29.0 | 26.4 | **35.1** |
| MultiPL-E | 76.3 | 74.6 | 66.6 | **76.8** |
| Aider-Polyglot | 9.8 | **24.4** | 13.8 | 12.9 |
| **Alignment** | | | |
| IFEval | 74.5 | **83.7** | 81.2 | 83.4 |
| Arena-Hard v2* | 15.9 | 24.8 | 9.5 | **43.4** |
| Creative Writing v3 | 72.7 | 68.1 | 53.6 | **83.5** |
| WritingBench | 66.9 | 72.2 | 68.5 | **83.4** |
| **Agent** | | | |
| BFCL-v3 | 53.0 | 58.6 | 57.6 | **61.9** |
| TAU1-Retail | 23.5 | 38.3 | 24.3 | **48.7** |
| TAU1-Airline | 14.0 | 18.0 | 16.0 | **32.0** |
| TAU2-Retail | - | 31.6 | 28.1 | **40.4** |
| TAU2-Airline | - | 18.0 | 12.0 | **24.0** |
| TAU2-Telecom | - | **18.4** | 17.5 | 13.2 |
| **Multilingualism** | | | |
| MultiIF | 60.7 | **70.8** | 61.3 | 69.0 |
| MMLU-ProX | 56.2 | **65.1** | 49.6 | 61.6 |
| INCLUDE | 58.6 | **67.8** | 53.8 | 60.1 |
| PolyMATH | 15.6 | 23.3 | 16.6 | **31.1** |
*: For reproducibility, we report the win rates evaluated by GPT-4.1.
## Quickstart
The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.51.0`, you will encounter the following error:
```
KeyError: 'qwen3'
```
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-4B-Instruct-2507"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=16384
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
content = tokenizer.decode(output_ids, skip_special_tokens=True)
print("content:", content)
```
For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
- SGLang:
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3-4B-Instruct-2507 --context-length 262144
```
- vLLM:
```shell
vllm serve Qwen/Qwen3-4B-Instruct-2507 --max-model-len 262144
```
**Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.**
For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
## Agentic Use
Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
from qwen_agent.agents import Assistant
# Define LLM
llm_cfg = {
'model': 'Qwen3-4B-Instruct-2507',
# Use a custom endpoint compatible with OpenAI API:
'model_server': 'http://localhost:8000/v1', # api_base
'api_key': 'EMPTY',
}
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
'time': {
'command': 'uvx',
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
},
'code_interpreter', # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
pass
print(responses)
```
## Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
2. **Adequate Output Length**: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models.
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
### Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen3technicalreport,
title={Qwen3 Technical Report},
author={Qwen Team},
year={2025},
eprint={2505.09388},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.09388},
}
```