Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -21,10 +21,6 @@ tags:
|
|
21 |
- lfm2
|
22 |
- edge
|
23 |
---
|
24 |
-
> [!NOTE]
|
25 |
-
> Includes our **chat template fixes**! <br> For `llama.cpp`, use `--jinja`
|
26 |
-
>
|
27 |
-
|
28 |
<div>
|
29 |
<p style="margin-top: 0;margin-bottom: 0;">
|
30 |
<em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
|
@@ -161,6 +157,10 @@ The candidate with ID 12345 is currently in the "Interview Scheduled" stage for
|
|
161 |
|
162 |
## 🏃 How to run LFM2
|
163 |
|
|
|
|
|
|
|
|
|
164 |
To run LFM2, you need to install Hugging Face [`transformers`](https://github.com/huggingface/transformers) from source (v4.54.0.dev0).
|
165 |
You can update or install it with the following command: `pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"`.
|
166 |
|
@@ -209,6 +209,10 @@ print(tokenizer.decode(output[0], skip_special_tokens=False))
|
|
209 |
|
210 |
You can directly run and test the model with this [Colab notebook](https://colab.research.google.com/drive/1_q3jQ6LtyiuPzFZv7Vw8xSfPU5FwkKZY?usp=sharing).
|
211 |
|
|
|
|
|
|
|
|
|
212 |
## 🔧 How to fine-tune LFM2
|
213 |
|
214 |
We recommend fine-tuning LFM2 models on your use cases to maximize performance.
|
|
|
21 |
- lfm2
|
22 |
- edge
|
23 |
---
|
|
|
|
|
|
|
|
|
24 |
<div>
|
25 |
<p style="margin-top: 0;margin-bottom: 0;">
|
26 |
<em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
|
|
|
157 |
|
158 |
## 🏃 How to run LFM2
|
159 |
|
160 |
+
You can run LFM2 with transformers and llama.cpp. vLLM support is coming.
|
161 |
+
|
162 |
+
### 1. Transformers
|
163 |
+
|
164 |
To run LFM2, you need to install Hugging Face [`transformers`](https://github.com/huggingface/transformers) from source (v4.54.0.dev0).
|
165 |
You can update or install it with the following command: `pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"`.
|
166 |
|
|
|
209 |
|
210 |
You can directly run and test the model with this [Colab notebook](https://colab.research.google.com/drive/1_q3jQ6LtyiuPzFZv7Vw8xSfPU5FwkKZY?usp=sharing).
|
211 |
|
212 |
+
### 2. Llama.cpp
|
213 |
+
|
214 |
+
You can run LFM2 with llama.cpp using its [GGUF checkpoint](https://huggingface.co/LiquidAI/LFM2-700M-GGUF). Find more information in the model card.
|
215 |
+
|
216 |
## 🔧 How to fine-tune LFM2
|
217 |
|
218 |
We recommend fine-tuning LFM2 models on your use cases to maximize performance.
|