danielhanchen commited on
Commit
8f27baa
·
verified ·
1 Parent(s): 4d27026

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +134 -0
README.md ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ - zh
6
+ base_model:
7
+ - THUDM/GLM-4.1V-9B-Thinking
8
+ pipeline_tag: image-text-to-text
9
+ library_name: transformers
10
+ tags:
11
+ - reasoning
12
+ - unsloth
13
+ ---
14
+ > [!NOTE]
15
+ > Includes Unsloth **chat template fixes**! <br> For `llama.cpp`, use `--jinja`
16
+ >
17
+
18
+ <div>
19
+ <p style="margin-top: 0;margin-bottom: 0;">
20
+ <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
21
+ </p>
22
+ <div style="display: flex; gap: 5px; align-items: center; ">
23
+ <a href="https://github.com/unslothai/unsloth/">
24
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
25
+ </a>
26
+ <a href="https://discord.gg/unsloth">
27
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
28
+ </a>
29
+ <a href="https://docs.unsloth.ai/">
30
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
31
+ </a>
32
+ </div>
33
+ </div>
34
+
35
+
36
+ # GLM-4.1V-9B-Thinking
37
+
38
+ <div align="center">
39
+ <img src=https://raw.githubusercontent.com/THUDM/GLM-4.1V-Thinking/99c5eb6563236f0ff43605d91d107544da9863b2/resources/logo.svg width="40%"/>
40
+ </div>
41
+ <p align="center">
42
+ 📖 View the GLM-4.1V-9B-Thinking <a href="https://arxiv.org/abs/2507.01006" target="_blank">paper</a>.
43
+ <br>
44
+ 💡 Try the <a href="https://huggingface.co/spaces/THUDM/GLM-4.1V-9B-Thinking-Demo" target="_blank">Hugging Face</a> or <a href="https://modelscope.cn/studios/ZhipuAI/GLM-4.1V-9B-Thinking-Demo" target="_blank">ModelScope</a> online demo for GLM-4.1V-9B-Thinking.
45
+ <br>
46
+ 📍 Using GLM-4.1V-9B-Thinking API at <a href="https://www.bigmodel.cn/dev/api/visual-reasoning-model/GLM-4.1V-Thinking">Zhipu Foundation Model Open Platform</a>
47
+ </p>
48
+
49
+
50
+ ## Model Introduction
51
+
52
+ Vision-Language Models (VLMs) have become foundational components of intelligent systems. As real-world AI tasks grow
53
+ increasingly complex, VLMs must evolve beyond basic multimodal perception to enhance their reasoning capabilities in
54
+ complex tasks. This involves improving accuracy, comprehensiveness, and intelligence, enabling applications such as
55
+ complex problem solving, long-context understanding, and multimodal agents.
56
+
57
+ Based on the [GLM-4-9B-0414](https://github.com/THUDM/GLM-4) foundation model, we present the new open-source VLM model
58
+ **GLM-4.1V-9B-Thinking**, designed to explore the upper limits of reasoning in vision-language models. By introducing
59
+ a "thinking paradigm" and leveraging reinforcement learning, the model significantly enhances its capabilities. It
60
+ achieves state-of-the-art performance among 10B-parameter VLMs, matching or even surpassing the 72B-parameter
61
+ Qwen-2.5-VL-72B on 18 benchmark tasks. We are also open-sourcing the base model GLM-4.1V-9B-Base to
62
+ support further research into the boundaries of VLM capabilities.
63
+
64
+ ![rl](https://raw.githubusercontent.com/THUDM/GLM-4.1V-Thinking/refs/heads/main/resources/rl.jpeg)
65
+
66
+ Compared to the previous generation models CogVLM2 and the GLM-4V series, **GLM-4.1V-Thinking** offers the
67
+ following improvements:
68
+
69
+ 1. The first reasoning-focused model in the series, achieving world-leading performance not only in mathematics but also
70
+ across various sub-domains.
71
+ 2. Supports **64k** context length.
72
+ 3. Handles **arbitrary aspect ratios** and up to **4K** image resolution.
73
+ 4. Provides an open-source version supporting both **Chinese and English bilingual** usage.
74
+
75
+ ## Benchmark Performance
76
+
77
+ By incorporating the Chain-of-Thought reasoning paradigm, GLM-4.1V-9B-Thinking significantly improves answer accuracy,
78
+ richness, and interpretability. It comprehensively surpasses traditional non-reasoning visual models.
79
+ Out of 28 benchmark tasks, it achieved the best performance among 10B-level models on 23 tasks,
80
+ and even outperformed the 72B-parameter Qwen-2.5-VL-72B on 18 tasks.
81
+
82
+ ![bench](https://raw.githubusercontent.com/THUDM/GLM-4.1V-Thinking/refs/heads/main/resources/bench.jpeg)
83
+
84
+ ## Quick Inference
85
+
86
+ This is a simple example of running single-image inference using the `transformers` library.
87
+ First, install the `transformers` library from source:
88
+
89
+ ```
90
+ pip install git+https://github.com/huggingface/transformers.git
91
+ ```
92
+
93
+ Then, run the following code:
94
+
95
+ ```python
96
+ from transformers import AutoProcessor, Glm4vForConditionalGeneration
97
+ import torch
98
+
99
+ MODEL_PATH = "THUDM/GLM-4.1V-9B-Thinking"
100
+ messages = [
101
+ {
102
+ "role": "user",
103
+ "content": [
104
+ {
105
+ "type": "image",
106
+ "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
107
+ },
108
+ {
109
+ "type": "text",
110
+ "text": "describe this image"
111
+ }
112
+ ],
113
+ }
114
+ ]
115
+ processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
116
+ model = Glm4vForConditionalGeneration.from_pretrained(
117
+ pretrained_model_name_or_path=MODEL_PATH,
118
+ torch_dtype=torch.bfloat16,
119
+ device_map="auto",
120
+ )
121
+ inputs = processor.apply_chat_template(
122
+ messages,
123
+ tokenize=True,
124
+ add_generation_prompt=True,
125
+ return_dict=True,
126
+ return_tensors="pt"
127
+ ).to(model.device)
128
+ generated_ids = model.generate(**inputs, max_new_tokens=8192)
129
+ output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
130
+ print(output_text)
131
+ ```
132
+
133
+ For video reasoning, web demo deployment, and more code, please check
134
+ our [GitHub](https://github.com/THUDM/GLM-4.1V-Thinking).