Update README.md
Browse files
README.md
CHANGED
@@ -125,11 +125,12 @@ Now you can start a new conversation with the agent by clicking on the plus sign
|
|
125 |
|
126 |
|
127 |
The model can also be deployed with the following libraries:
|
128 |
-
- [`LMStudio (recommended for quantized model)`](https://lmstudio.ai/): See [here](#lmstudio)
|
129 |
-
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm)
|
130 |
-
- [`ollama`](https://github.com/ollama/ollama): See [here](#ollama)
|
131 |
- [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference)
|
132 |
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
|
|
|
|
|
133 |
|
134 |
### OpenHands (recommended)
|
135 |
|
@@ -267,7 +268,7 @@ Make sure you install [`vLLM >= 0.8.5`](https://github.com/vllm-project/vllm/rel
|
|
267 |
pip install vllm --upgrade
|
268 |
```
|
269 |
|
270 |
-
Doing so should automatically install [`mistral_common >= 1.5.
|
271 |
|
272 |
To check:
|
273 |
```
|
@@ -315,7 +316,7 @@ messages = [
|
|
315 |
"content": [
|
316 |
{
|
317 |
"type": "text",
|
318 |
-
"text": "
|
319 |
},
|
320 |
],
|
321 |
},
|
@@ -327,96 +328,6 @@ response = requests.post(url, headers=headers, data=json.dumps(data))
|
|
327 |
print(response.json()["choices"][0]["message"]["content"])
|
328 |
```
|
329 |
|
330 |
-
<details>
|
331 |
-
<summary>Output</summary>
|
332 |
-
|
333 |
-
Certainly! The Fibonacci sequence is a series of numbers where each number is the sum of the two preceding ones, usually starting with 0 and 1. Here's a simple Python function to compute the Fibonacci sequence:
|
334 |
-
|
335 |
-
### Iterative Approach
|
336 |
-
This approach uses a loop to compute the Fibonacci number iteratively.
|
337 |
-
|
338 |
-
```python
|
339 |
-
def fibonacci(n):
|
340 |
-
if n <= 0:
|
341 |
-
return "Input should be a positive integer."
|
342 |
-
elif n == 1:
|
343 |
-
return 0
|
344 |
-
elif n == 2:
|
345 |
-
return 1
|
346 |
-
|
347 |
-
a, b = 0, 1
|
348 |
-
for _ in range(2, n):
|
349 |
-
a, b = b, a + b
|
350 |
-
return b
|
351 |
-
|
352 |
-
# Example usage:
|
353 |
-
print(fibonacci(10)) # Output: 34
|
354 |
-
```
|
355 |
-
|
356 |
-
### Recursive Approach
|
357 |
-
This approach uses recursion to compute the Fibonacci number. Note that this is less efficient for large `n` due to repeated calculations.
|
358 |
-
|
359 |
-
```python
|
360 |
-
def fibonacci_recursive(n):
|
361 |
-
if n <= 0:
|
362 |
-
return "Input should be a positive integer."
|
363 |
-
elif n == 1:
|
364 |
-
return 0
|
365 |
-
elif n == 2:
|
366 |
-
return 1
|
367 |
-
else:
|
368 |
-
return fibonacci_recursive(n - 1) + fibonacci_recursive(n - 2)
|
369 |
-
|
370 |
-
# Example usage:
|
371 |
-
print(fibonacci_recursive(10)) # Output: 34
|
372 |
-
```
|
373 |
-
|
374 |
-
\### Memoization Approach
|
375 |
-
This approach uses memoization to store previously computed Fibonacci numbers, making it more efficient than the simple recursive approach.
|
376 |
-
|
377 |
-
```python
|
378 |
-
def fibonacci_memo(n, memo={}):
|
379 |
-
if n <= 0:
|
380 |
-
return "Input should be a positive integer."
|
381 |
-
elif n == 1:
|
382 |
-
return 0
|
383 |
-
elif n == 2:
|
384 |
-
return 1
|
385 |
-
elif n in memo:
|
386 |
-
return memo[n]
|
387 |
-
|
388 |
-
memo[n] = fibonacci_memo(n - 1, memo) + fibonacci_memo(n - 2, memo)
|
389 |
-
return memo[n]
|
390 |
-
|
391 |
-
# Example usage:
|
392 |
-
print(fibonacci_memo(10)) # Output: 34
|
393 |
-
```
|
394 |
-
|
395 |
-
\### Dynamic Programming Approach
|
396 |
-
This approach uses an array to store the Fibonacci numbers up to `n`.
|
397 |
-
|
398 |
-
```python
|
399 |
-
def fibonacci_dp(n):
|
400 |
-
if n <= 0:
|
401 |
-
return "Input should be a positive integer."
|
402 |
-
elif n == 1:
|
403 |
-
return 0
|
404 |
-
elif n == 2:
|
405 |
-
return 1
|
406 |
-
|
407 |
-
fib = [0, 1] + [0] * (n - 2)
|
408 |
-
for i in range(2, n):
|
409 |
-
fib[i] = fib[i - 1] + fib[i - 2]
|
410 |
-
return fib[n - 1]
|
411 |
-
|
412 |
-
# Example usage:
|
413 |
-
print(fibonacci_dp(10)) # Output: 34
|
414 |
-
```
|
415 |
-
|
416 |
-
You can choose any of these approaches based on your needs. The iterative and dynamic programming approaches are generally more efficient for larger values of `n`.
|
417 |
-
|
418 |
-
</details>
|
419 |
-
|
420 |
|
421 |
### Mistral-inference
|
422 |
|
@@ -450,39 +361,7 @@ You can run the model using the following command:
|
|
450 |
mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300
|
451 |
```
|
452 |
|
453 |
-
|
454 |
-
|
455 |
-
<details>
|
456 |
-
<summary>Output</summary>
|
457 |
-
|
458 |
-
Certainly! A common and efficient way to compute Fibonacci numbers is by using memoization to store previously computed values. This avoids redundant calculations and significantly improves performance. Below is a Python function that uses memoization to compute Fibonacci numbers efficiently:
|
459 |
-
|
460 |
-
```python
|
461 |
-
def fibonacci(n, memo=None):
|
462 |
-
if memo is None:
|
463 |
-
memo = {}
|
464 |
-
|
465 |
-
if n in memo:
|
466 |
-
return memo[n]
|
467 |
-
|
468 |
-
if n <= 1:
|
469 |
-
return n
|
470 |
-
|
471 |
-
memo[n] = fibonacci(n - 1, memo) + fibonacci(n - 2, memo)
|
472 |
-
return memo[n]
|
473 |
-
|
474 |
-
# Example usage:
|
475 |
-
n = 10
|
476 |
-
print(f"Fibonacci number at position {n} is {fibonacci(n)}")
|
477 |
-
```
|
478 |
-
|
479 |
-
### Explanation:
|
480 |
-
|
481 |
-
1. **Base Case**: If `n` is 0 or 1, the function returns `n` because the Fibonacci sequence starts with 0 and 1.
|
482 |
-
2. **Memoization**: The function uses a dictionary `memo` to store the results of previously computed Fibonacci numbers.
|
483 |
-
3. **Recursive Case**: For other values of `n`, the function recursively computes the Fibonacci number by summing the results of `fibonacci(n - 1)` and `fibonacci(n)`
|
484 |
-
|
485 |
-
</details>
|
486 |
|
487 |
### Ollama
|
488 |
|
@@ -532,7 +411,7 @@ tokenized = tokenizer.encode_chat_completion(
|
|
532 |
ChatCompletionRequest(
|
533 |
messages=[
|
534 |
SystemMessage(content=SYSTEM_PROMPT),
|
535 |
-
UserMessage(content="
|
536 |
],
|
537 |
)
|
538 |
)
|
|
|
125 |
|
126 |
|
127 |
The model can also be deployed with the following libraries:
|
128 |
+
- [`LMStudio (recommended for quantized model)`](https://lmstudio.ai/): See [here](#lmstudio-recommended-for-quantized-model)
|
129 |
+
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
|
|
|
130 |
- [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference)
|
131 |
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
|
132 |
+
- [`ollama`](https://github.com/ollama/ollama): See [here](#ollama)
|
133 |
+
|
134 |
|
135 |
### OpenHands (recommended)
|
136 |
|
|
|
268 |
pip install vllm --upgrade
|
269 |
```
|
270 |
|
271 |
+
Doing so should automatically install [`mistral_common >= 1.5.5`](https://github.com/mistralai/mistral-common/releases/tag/v1.5.5).
|
272 |
|
273 |
To check:
|
274 |
```
|
|
|
316 |
"content": [
|
317 |
{
|
318 |
"type": "text",
|
319 |
+
"text": "<your-command>",
|
320 |
},
|
321 |
],
|
322 |
},
|
|
|
328 |
print(response.json()["choices"][0]["message"]["content"])
|
329 |
```
|
330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
### Mistral-inference
|
333 |
|
|
|
361 |
mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300
|
362 |
```
|
363 |
|
364 |
+
You can then prompt it with anything you'd like.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
|
366 |
### Ollama
|
367 |
|
|
|
411 |
ChatCompletionRequest(
|
412 |
messages=[
|
413 |
SystemMessage(content=SYSTEM_PROMPT),
|
414 |
+
UserMessage(content="<your-command>"),
|
415 |
],
|
416 |
)
|
417 |
)
|