--- library_name: diffusers --- # Model Card for Model ID House plan sketches #trained on:Frisby ## Model Details ```python class TrainingConfig: image_size = 192 # the generated image resolution train_batch_size = 8 eval_batch_size = 8 # how many images to sample during evaluation num_epochs = 200 gradient_accumulation_steps = 1 learning_rate = 1e-4 lr_warmup_steps = 500 save_image_epochs = 10 save_model_epochs = 30 mixed_precision = 'fp16' # `no` for float32, `fp16` for automatic mixed precision output_dir = 'ddpm-butterflies-128' # the model namy locally and on the HF Hub push_to_hub = False # whether to upload the saved model to the HF Hub hub_private_repo = False overwrite_output_dir = False # overwrite the old model when re-running the notebook seed = 0 config = TrainingConfig() ``` copy/paste/save as inference.py ``` from diffusers import DiffusionPipeline import argparse # Parse command line arguments parser = argparse.ArgumentParser(description='Generate an image using a Hugging Face diffusion model') parser.add_argument('--model', type=str, default="uisikdag/ddpm-few-shot-art-painting", help='Hugging Face model name/path') parser.add_argument('--steps', type=int, default=500, help='Number of inference steps') args = parser.parse_args() # Load the model generator = DiffusionPipeline.from_pretrained(args.model).to("cuda") # Generate image image = generator(num_inference_steps=args.steps).images[0] # Save the image with model name in the filename output_filename = f"output_{args.model.split('/')[-1]}.png" image.save(output_filename) print(f"Image saved as {output_filename}") ``` python inference.py --model="uisikdag/ddpm-robin-plus-old" --steps 1000