File size: 9,538 Bytes
c790c1b
a74565b
c790c1b
 
bf21b18
c790c1b
 
 
 
 
1f88281
c790c1b
 
 
d611421
 
 
 
 
 
 
 
 
 
 
 
 
c790c1b
 
 
d611421
c790c1b
 
 
 
 
 
 
3f0e9ed
c790c1b
 
 
 
 
 
 
 
d611421
 
 
c790c1b
 
 
 
c485313
 
 
65d1b6b
c790c1b
 
 
c485313
 
 
 
 
 
65d1b6b
c790c1b
 
 
 
 
c485313
 
 
65d1b6b
c790c1b
 
 
c485313
 
44afa7b
c485313
 
 
 
65d1b6b
c790c1b
 
 
 
 
c98ef62
c485313
bf21b18
c790c1b
 
d611421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f905163
d611421
 
 
 
 
 
 
 
f905163
51f54f9
d611421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f905163
 
d611421
 
 
 
 
 
 
 
f905163
51f54f9
d611421
 
 
 
 
f905163
4dee18f
 
d611421
 
c790c1b
 
 
459381f
 
 
 
 
 
c790c1b
 
 
 
 
 
 
d611421
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
language: zh
datasets: CLUECorpusSmall
widget: 
- text: "米饭是一种用稻米与水煮成的食物"


---


# Chinese GPT2 Models

## Model description

The set of GPT2 models, except for GPT2-xlarge model, are pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). The GPT2-xlarge model is pre-trained by [TencentPretrain](https://github.com/Tencent/TencentPretrain) introduced in [this paper](https://arxiv.org/abs/2212.06385), which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework. Besides, the other models could also be pre-trained by TencentPretrain.

The model is used to generate Chinese texts. You can download the set of Chinese GPT2 models either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below:

|                   |              Link              |
| ----------------- | :----------------------------: |
| **GPT2-distil** | [**L=6/H=768**][distil] |
| **GPT2**  | [**L=12/H=768**][base] |
| **GPT2-medium**  | [**L=24/H=1024**][medium] |
| **GPT2-large**  | [**L=36/H=1280**][large] |
| **GPT2-xlarge**  | [**L=48/H=1600**][xlarge] |

Note that the 6-layer model is called GPT2-distil model because it follows the configuration of [distilgpt2](https://huggingface.co/distilgpt2), and the pre-training does not involve the supervision of larger models.

## How to use

You can use the model directly with a pipeline for text generation (take the case of GPT2-distil):

```python
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> text_generator = TextGenerationPipeline(model, tokenizer)   
>>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True)
    [{'generated_text': '这是很久之前的事情了 。 我 现 在 想 起 来 就 让 自 己 很 伤 心 , 很 失 望 。 我 现 在 想 到 , 我 觉 得 大 多 数 人 的 生 活 比 我 的 生 命 还 要 重 要 , 对 一 些 事 情 的 看 法 , 对 一 些 人 的 看 法 , 都 是 在 发 泄 。 但 是 , 我 们 的 生 活 是 需 要 一 个 信 用 体 系 的 。 我 不 知'}]
```

## Training data

[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. 

## Training procedure

The GPT2-xlarge model is pre-trained by [TencentPretrain](https://github.com/Tencent/TencentPretrain), and the others are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 1024. 

For the models pre-trained by UER-py, take the case of GPT2-distil

Stage1:

```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
                      --seq_length 128 --processes_num 32 --data_processor lm 
```

```
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --config_path models/gpt2/distil_config.json \
                    --output_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                    --learning_rate 1e-4 --batch_size 64
```

Stage2:

```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
                      --seq_length 1024 --processes_num 32 --data_processor lm 
```

```
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --pretrained_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin-1000000 \
                    --config_path models/gpt2/distil_config.json \
                    --output_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
                    --learning_rate 5e-5 --batch_size 16
```

Finally, we convert the pre-trained model into Huggingface's format:

```
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin-250000 \
                                                        --output_model_path pytorch_model.bin \
                                                        --layers_num 6
```

For GPT2-xlarge model, we use TencetPretrain.

Stage1:

```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
                      --seq_length 128 --processes_num 32 --data_processor lm
```

```
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \
                      --dataset_path corpora/cluecorpussmall_lm_seq128_dataset.pt \
                      --vocab_path models/google_zh_vocab.txt \
                      --config_path models/gpt2/xlarge_config.json \
                      --output_model_path models/cluecorpussmall_gpt2_xlarge_seq128_model \
                      --world_size 8 --batch_size 64 \
                      --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                      --deepspeed_checkpoint_activations --deepspeed_checkpoint_layers_num 24
```

Before stage2, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints:

```
python3 models/cluecorpussmall_gpt2_xlarge_seq128_model/zero_to_fp32.py models/cluecorpussmall_gpt2_xlarge_seq128_model/ \
                                                                        models/cluecorpussmall_gpt2_xlarge_seq128_model.bin
```

Stage2:

```
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
                      --seq_length 1024 --processes_num 32 --data_processor lm
```

```
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \
                      --dataset_path corpora/cluecorpussmall_lm_seq1024_dataset.pt \
                      --vocab_path models/google_zh_vocab.txt \
                      --config_path models/gpt2/xlarge_config.json \
                      --pretrained_model_path models/cluecorpussmall_gpt2_xlarge_seq128_model.bin \
                      --output_model_path models/cluecorpussmall_gpt2_xlarge_seq1024_model \
                      --world_size 8 --batch_size 16 --learning_rate 5e-5 \
                      --total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
                      --deepspeed_checkpoint_activations --deepspeed_checkpoint_layers_num 6
```

Then, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints:

```
python3 models/cluecorpussmall_gpt2_xlarge_seq1024_model/zero_to_fp32.py models/cluecorpussmall_gpt2_xlarge_seq1024_model/ \
                                                                         models/cluecorpussmall_gpt2_xlarge_seq1024_model.bin
```

Finally, we convert the pre-trained model into Huggingface's format:

```
python3 scripts/convert_gpt2_from_tencentpretrain_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_xlarge_seq1024_model.bin \
                                                                    --output_model_path pytorch_model.bin \
                                                                    --layers_num 48
```

### BibTeX entry and citation info

```
@article{radford2019language,
  title={Language Models are Unsupervised Multitask Learners},
  author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
  year={2019}
}

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}

@article{zhao2023tencentpretrain,
  title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
  author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
  journal={ACL 2023},
  pages={217},
  year={2023}
```

[distil]:https://huggingface.co/uer/gpt2-distil-chinese-cluecorpussmall
[base]:https://huggingface.co/uer/gpt2-chinese-cluecorpussmall
[medium]:https://huggingface.co/uer/gpt2-medium-chinese-cluecorpussmall
[large]:https://huggingface.co/uer/gpt2-large-chinese-cluecorpussmall
[xlarge]:https://huggingface.co/uer/gpt2-xlarge-chinese-cluecorpussmall