File size: 13,693 Bytes
3283389
478d13d
 
 
3283389
478d13d
 
 
 
 
 
 
3283389
478d13d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6604417
478d13d
6604417
478d13d
6604417
478d13d
 
6604417
478d13d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6604417
478d13d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6604417
478d13d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fc28af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478d13d
6604417
478d13d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6604417
478d13d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6604417
478d13d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6604417
478d13d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6604417
478d13d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
---

quantized_by: ubergarm
pipeline_tag: text-generation
base_model: Qwen/Qwen3-Coder-30B-A3B-Instruct
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct/blob/main/LICENSE
base_model_relation: quantized
tags:
- imatrix
- conversational
- qwen3_moe
- ik_llama.cpp
---


## `ik_llama.cpp` imatrix Quantizations of Qwen/Qwen3-Coder-30B-A3B-Instruct

This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!



*NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.

Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP.

These quants provide best in class perplexity for the given memory footprint.

## Big Thanks
Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)!  **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!

Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models!

## Quant Collection
Perplexity computed against *wiki.test.raw*.

![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.")

These first three are just test quants for baseline perplexity comparison:
* `bf16` 56.894 GiB (16.007 BPW)
  - Final estimate: PPL = 9.5334 +/- 0.07560
* `Q8_0` 30.247 GiB (8.510 BPW)
  - Final estimate: PPL = 9.5317 +/- 0.07551 (*NOTE* lower than BF16 but didn't use it for "baseline"...)
* `Q4_0` 16.111 GiB (4.533 BPW)
  - Final estimate: PPL = 9.7225 +/- 0.07712

## `IQ5_K` 21.324 GiB (5.999 BPW)

Final estimate: PPL = 9.5930 +/- 0.07614



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

# 48 Repeating Layers [0-47]



# Attention

blk\.(0)\.attn_q.*=q8_0

blk\.(0)\.attn_k.*=q8_0

blk\.(0)\.attn_v.*=q8_0

blk\.(0)\.attn_output.*=q8_0



blk\..*\.attn_q.*=iq5_k

blk\..*\.attn_k.*=iq6_k
blk\..*\.attn_v.*=iq6_k

blk\..*\.attn_output.*=iq5_k



# Routed Experts

blk\.(0|47)\.ffn_down_exps\.weight=q8_0

blk\.(0|47)\.ffn_(gate|up)_exps\.weight=q8_0



blk\..*\.ffn_down_exps\.weight=iq6_k

blk\..*\.ffn_(gate|up)_exps\.weight=iq5_k

# Non-Repeating Layers
token_embd\.weight=iq6_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/imatrix-Qwen3-Coder-30B-A3B-Instruct-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-BF16-00001-of-00002.gguf \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-IQ5_K.gguf \
    IQ5_K \

    192

```


</details>

## `IQ4_K` 17.878 GiB (5.030 BPW)

Final estimate: PPL = 9.6023 +/- 0.07613



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

# 48 Repeating Layers [0-47]



# Attention

blk\.(0)\.attn_q.*=q8_0

blk\.(0)\.attn_k.*=q8_0

blk\.(0)\.attn_v.*=q8_0

blk\.(0)\.attn_output.*=q8_0



blk\..*\.attn_q.*=iq5_k

blk\..*\.attn_k.*=iq6_k
blk\..*\.attn_v.*=iq6_k

blk\..*\.attn_output.*=iq5_k



# Routed Experts

blk\.(0|47)\.ffn_down_exps\.weight=q8_0

blk\.(0|47)\.ffn_(gate|up)_exps\.weight=q8_0



blk\..*\.ffn_down_exps\.weight=iq5_k

blk\..*\.ffn_(gate|up)_exps\.weight=iq4_k

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/imatrix-Qwen3-Coder-30B-A3B-Instruct-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-BF16-00001-of-00002.gguf \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-IQ4_K.gguf \
    IQ4_K \

    192

```


</details>

## `IQ4_KSS` 15.531 GiB (4.370 BPW)

Final estimate: PPL = 9.6441 +/- 0.07648



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

# 48 Repeating Layers [0-47]



# Attention

blk\.(0)\.attn_q.*=q8_0

blk\.(0)\.attn_k.*=q8_0

blk\.(0)\.attn_v.*=q8_0

blk\.(0)\.attn_output.*=q8_0



blk\..*\.attn_q.*=iq5_k

blk\..*\.attn_k.*=iq6_k
blk\..*\.attn_v.*=iq6_k

blk\..*\.attn_output.*=iq5_k



# Routed Experts

blk\.(0|47)\.ffn_down_exps\.weight=q8_0

blk\.(0|47)\.ffn_(gate|up)_exps\.weight=q8_0



blk\..*\.ffn_down_exps\.weight=iq4_ks

blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/imatrix-Qwen3-Coder-30B-A3B-Instruct-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-BF16-00001-of-00002.gguf \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-IQ4_KSS.gguf \
    IQ4_KSS \

    192

```


</details>

## `IQ3_K` 14.509 GiB (4.082 BPW)

Final estimate: PPL = 9.6849 +/- 0.0768



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

# 48 Repeating Layers [0-47]



# Attention

blk\.(0)\.attn_q.*=q8_0

blk\.(0)\.attn_k.*=q8_0

blk\.(0)\.attn_v.*=q8_0

blk\.(0)\.attn_output.*=q8_0



blk\..*\.attn_q.*=iq5_k

blk\..*\.attn_k.*=iq6_k
blk\..*\.attn_v.*=iq6_k

blk\..*\.attn_output.*=iq5_k



# Routed Experts

blk\.(0|47)\.ffn_down_exps\.weight=q8_0

blk\.(0|47)\.ffn_(gate|up)_exps\.weight=q8_0



blk\..*\.ffn_down_exps\.weight=iq4_k

blk\..*\.ffn_(gate|up)_exps\.weight=iq3_k

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/imatrix-Qwen3-Coder-30B-A3B-Instruct-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-BF16-00001-of-00002.gguf \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-PR735-IQ3_K.gguf \
    IQ3_K \

    192

```


</details>



## `IQ3_KS` 13.633 GiB (3.836 BPW)

Final estimate: PPL = 9.7940 +/- 0.07795



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

# 48 Repeating Layers [0-47]



# Attention

blk\.(0)\.attn_q.*=q8_0

blk\.(0)\.attn_k.*=q8_0

blk\.(0)\.attn_v.*=q8_0

blk\.(0)\.attn_output.*=q8_0



blk\..*\.attn_q.*=iq4_ks

blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks

blk\..*\.attn_output.*=iq4_ks



# Routed Experts

blk\.(0|47)\.ffn_down_exps\.weight=q8_0

blk\.(0|47)\.ffn_(gate|up)_exps\.weight=q8_0



blk\..*\.ffn_down_exps\.weight=iq4_ks

blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/imatrix-Qwen3-Coder-30B-A3B-Instruct-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-BF16-00001-of-00002.gguf \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-IQ3_KS.gguf \
    IQ3_KS \

    192

```


</details>

## `IQ2_KL` 11.516 GiB (3.240 BPW)

Final estimate: PPL = 10.0475 +/- 0.08016



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

# 48 Repeating Layers [0-47]



# Attention

blk\.(0)\.attn_q.*=q8_0

blk\.(0)\.attn_k.*=q8_0

blk\.(0)\.attn_v.*=q8_0

blk\.(0)\.attn_output.*=q8_0



blk\..*\.attn_q.*=iq5_k

blk\..*\.attn_k.*=iq6_k
blk\..*\.attn_v.*=iq6_k

blk\..*\.attn_output.*=iq5_k



# Routed Experts

blk\.(0|47)\.ffn_down_exps\.weight=q8_0

blk\.(0|47)\.ffn_(gate|up)_exps\.weight=q8_0



blk\..*\.ffn_down_exps\.weight=iq3_ks

blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/imatrix-Qwen3-Coder-30B-A3B-Instruct-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-BF16-00001-of-00002.gguf \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-IQ2_KL.gguf \
    IQ2_KL \

    192

```


</details>

## `IQ2_KT` 9.469 GiB (2.664 BPW)

Final estimate: PPL = 10.1352 +/- 0.08007



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

# 48 Repeating Layers [0-47]

blk\.(0)\.attn_q.*=iq5_ks

blk\.(0)\.attn_k.*=iq6_k

blk\.(0)\.attn_v.*=iq6_k

blk\.(0)\.attn_output.*=iq5_ks



# Attention

blk\..*\.attn_q.*=iq4_kt

blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks

blk\..*\.attn_output.*=iq4_kt



# Routed Experts

blk\.(0|47)\.ffn_down_exps\.weight=iq4_kt

blk\.(0|47)\.ffn_(gate|up)_exps\.weight=iq4_kt



blk\..*\.ffn_down_exps\.weight=iq3_kt

blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kt

# Non-Repeating Layers
token_embd\.weight=iq4_kt
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/imatrix-Qwen3-Coder-30B-A3B-Instruct-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-BF16-00001-of-00002.gguf \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-IQ2_KT.gguf \
    IQ2_KT \

    192

```


</summary>

## `IQ1_KT` 7.583 GiB (2.133 BPW)

Final estimate: PPL = 11.0592 +/- 0.08760



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



custom="

# 48 Repeating Layers [0-47]

blk\.(0)\.attn_q.*=iq5_ks

blk\.(0)\.attn_k.*=iq6_k

blk\.(0)\.attn_v.*=iq6_k

blk\.(0)\.attn_output.*=iq5_ks



# Attention

blk\..*\.attn_q.*=iq4_kt

blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks

blk\..*\.attn_output.*=iq4_kt



# Routed Experts

blk\.(0|47)\.ffn_down_exps\.weight=iq4_kt

blk\.(0|47)\.ffn_(gate|up)_exps\.weight=iq4_kt



blk\..*\.ffn_down_exps\.weight=iq2_kt

blk\..*\.ffn_(gate|up)_exps\.weight=iq1_kt

# Non-Repeating Layers
token_embd\.weight=iq4_kt
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/imatrix-Qwen3-Coder-30B-A3B-Instruct-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-BF16-00001-of-00002.gguf \

    /mnt/raid/models/ubergarm/Qwen3-Coder-30B-A3B-Instruct-GGUF/Qwen3-Coder-30B-A3B-Instruct-IQ1_KT.gguf \
    IQ1_KT \

    192

```


</details>

## Quick Start
#### Full GPU Offload with CUDA
```bash

# Compile CUDA backend

cmake -B ./build -DCMAKE_BUILD_TYPE=Release -DGGML_CUDA=ON -DGGML_SCHED_MAX_COPIES=1 -DGGML_CUDA_F16=ON

cmake --build ./build --config Release -j $(nproc)



# Run Server

./build/bin/llama-server \

    --model Qwen3-Coder-30B-A3B-Instruct-IQ3_KS.gguf \

    --alias ubergarm/Qwen3-Coder-30B-A3B-Instruct \

    --ctx-size 32768 \

    -ctk q8_0 -ctv q8_0 \

    -fa -fmoe \

    -ngl 99 \

    --parallel 1 \

    --threads 1 \

    --host 127.0.0.1 \

    --port 8080

```

#### CPU-only Backend
```bash

# Compile

cmake -B build -DCMAKE_BUILD_TYPE=Release -DGGML_CUDA=0 -DGGML_VULKAN=0

cmake --build build --config Release -j $(nproc)



# Run Server

./build/bin/llama-server \

    --model Qwen3-Coder-30B-A3B-Instruct-IQ3_KS.gguf \

    --alias ubergarm/Qwen3-Coder-30B-A3B-Instruct \

    --ctx-size 32768 \

    -ctk q8_0 -ctv q8_0 \

    -fa -fmoe \

    -ub 4096 -b 4096 \

    --parallel 1 \

    --threads 8 \

    --host 127.0.0.1 \

    --port 8080 \

    --no-mmap

```

## References
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)
* [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258)
* [ubergarm-imatrix-calibration-corpus-v02.txt](https://gist.github.com/ubergarm/edfeb3ff9c6ec8b49e88cdf627b0711a?permalink_comment_id=5682584#gistcomment-5682584)