--- quantized_by: ubergarm pipeline_tag: text-generation base_model: Qwen/Qwen3-235B-A22B-Instruct-2507 license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507/blob/main/LICENSE base_model_relation: quantized tags: - imatrix - conversational - ik_llama.cpp --- ## `ik_llama.cpp` imatrix Quantizations of Qwen/Qwen3-235B-A22B-Instruct-2507 This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc! *NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants. Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP. These quants provide best in class perplexity for the given memory footprint. ## Big Thanks Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)! **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!! Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models! ## Quant Collection Perplexity computed against *wiki.test.raw*. These first two are just test quants for baseline perplexity comparison: ![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.") * `bf16` 437.989 GiB (16.003 BPW) - Final estimate: PPL = 4.3079 +/- 0.02544 * `Q8_0` 232.769 GiB (8.505 BPW) - Final estimate: PPL = 4.3139 +/- 0.02550 ## `IQ5_K` 161.722 GiB (5.909 BPW) Final estimate: PPL = 4.3351 +/- 0.02566
👈 Secret Recipe ```bash #!/usr/bin/env bash # Repeating Layers [0-93] custom=" # Attention blk\..*\.attn_q.*=iq6_k blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq6_k # Routed Experts blk\..*\.ffn_down_exps\.weight=iq6_k blk\..*\.ffn_(gate|up)_exps\.weight=iq5_k # Token Embedding token_embd\.weight=iq6_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-BF16-00001-of-00010.gguf \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-IQ5_K.gguf \ IQ5_K \ 192 ```
## `IQ4_K` 134.183 GiB (4.903 BPW) Final estimate: PPL = 4.3668 +/- 0.02594
👈 Secret Recipe ```bash #!/usr/bin/env bash # Repeating Layers [0-93] custom=" # Attention blk\..*\.attn_q.*=iq6_k blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq6_k # Routed Experts blk\..*\.ffn_down_exps\.weight=iq5_k blk\..*\.ffn_(gate|up)_exps\.weight=iq4_k # Token Embedding token_embd\.weight=iq6_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-BF16-00001-of-00010.gguf \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-IQ4_K.gguf \ IQ4_K \ 192 ```
## `pure-IQ4_KS` 116.994 GiB (4.275 BPW) Final estimate: PPL = 4.4156 +/- 0.02624
👈 Secret Recipe ```bash #!/usr/bin/env bash # Repeating Layers [0-93] custom=" # Attention blk\..*\.attn_k.*=iq4_ks blk\..*\.attn_q.*=iq4_ks blk\..*\.attn_v.*=iq4_ks blk\..*\.attn_output.*=iq4_ks # Routed Experts blk\..*\.ffn_down_exps\.weight=iq4_ks blk\..*\.ffn_(gate|up)_exps\.weight=iq4_ks # Token Embedding token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 1 -m 1 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-BF16-00001-of-00010.gguf \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-eaddario-imat-pure-IQ4_KS.gguf \ IQ4_KS \ 192 ```
## `IQ4_KSS` 115.085 GiB (4.205 BPW) Final estimate: PPL = 4.4017 +/- 0.02614
This one is a little funky just for fun. Seems smort! 👈 Secret Recipe ```bash #!/usr/bin/env bash # Repeating Layers [0-93] custom=" # Attention blk\..*\.attn_q.*=iq6_k blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq6_k # Routed Experts blk\.(0|1|2|3)\.ffn_down_exps\.weight=iq5_ks blk\.(0|1|2|3)\.ffn_(gate|up)_exps\.weight=iq4_ks blk\..*\.ffn_down_exps\.weight=iq4_ks blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss # Token Embedding token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-BF16-00001-of-00010.gguf \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-IQ4_KSS.gguf \ IQ4_KSS \ 192 ```
## `IQ3_K` 106.644 GiB (3.897 BPW) Final estimate: PPL = 4.4561 +/- 0.02657
👈 Secret Recipe ```bash #!/usr/bin/env bash # Repeating Layers [0-93] custom=" # Attention blk\..*\.attn_q.*=iq6_k blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq6_k # Routed Experts blk\..*\.ffn_down_exps\.weight=iq4_k blk\..*\.ffn_(gate|up)_exps\.weight=iq3_k # Token Embedding token_embd\.weight=iq6_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 1 -m 1 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-BF16-00001-of-00010.gguf \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-IQ3_K.gguf \ IQ3_K \ 192 ```
## `IQ3_KS` 101.308 GiB (3.702 BPW) Final estimate: PPL = 4.4915 +/- 0.02685
Another funky smort one! 👈 Secret Recipe ```bash #!/usr/bin/env bash # Repeating Layers [0-93] custom=" # Attention blk\..*\.attn_q.*=iq6_k blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq6_k # Routed Experts blk\.(0|1|2|3)\.ffn_down_exps\.weight=iq5_ks blk\.(0|1|2|3)\.ffn_(gate|up)_exps\.weight=iq4_ks blk\..*\.ffn_down_exps\.weight=iq4_ks blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks # Token Embedding token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-BF16-00001-of-00010.gguf \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-IQ3_KS.gguf \ IQ3_KS \ 192 ```
## `IQ2_KL` 81.866 GiB (2.991 BPW) Final estimate: PPL = 4.7912 +/- 0.02910
👈 Secret Recipe ```bash #!/usr/bin/env bash # Repeating Layers [0-93] custom=" # Attention blk\..*\.attn_q.*=iq6_k blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq6_k # Routed Experts blk\..*\.ffn_down_exps\.weight=iq3_ks blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl # Token Embedding token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-BF16-00001-of-00010.gguf \ /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-IQ2_KL.gguf \ IQ2_KL \ 192 ```
## Quick Start This example is for a single CUDA GPU hybrid infrencing with CPU/RAM. Check ik_llama.cpp discussions or my other quants for more examples for multi-GPU etc. ```bash ./build/bin/llama-server \ --model /models/IQ5_K/Qwen3-235B-A22B-Instruct-IQ5_K-00001-of-00004.gguf \ --alias ubergarm/Qwen3-235B-A22B-Instruct-2507 \ -fa -fmoe \ -ctk q8_0 -ctv q8_0 \ -c 32768 \ -ngl 99 \ -ot "blk\.[0-9]\.ffn.*=CUDA0" \ -ot "blk.*\.ffn.*=CPU \ --threads 16 \ -ub 4096 -b 4096 \ --host 127.0.0.1 \ --port 8080 ``` ## References * [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp) * [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258)