Add IQ2_KL and graph
Browse files- .gitattributes +1 -0
- README.md +47 -0
- images/perplexity.png +3 -0
.gitattributes
CHANGED
@@ -35,4 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
imatrix-*.dat filter=lfs diff=lfs merge=lfs -text
|
37 |
*.gguf filter=lfs diff=lfs merge=lfs -text
|
|
|
38 |
imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat filter=lfs diff=lfs merge=lfs -text
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
imatrix-*.dat filter=lfs diff=lfs merge=lfs -text
|
37 |
*.gguf filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
39 |
imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -28,6 +28,8 @@ Also thanks to all the folks in the quanting and inferencing community on [Beave
|
|
28 |
## Quant Collection
|
29 |
Perplexity computed against *wiki.test.raw*. These first two are just test quants for baseline perplexity comparison:
|
30 |
|
|
|
|
|
31 |
* `bf16` 437.989 GiB (16.003 BPW)
|
32 |
- Final estimate: PPL = 4.3079 +/- 0.02544
|
33 |
* `Q8_0` 232.769 GiB (8.505 BPW)
|
@@ -169,6 +171,51 @@ numactl -N 1 -m 1 \
|
|
169 |
|
170 |
</details>
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
## Quick Start
|
173 |
This example is for a single CUDA GPU hybrid infrencing with CPU/RAM. Check ik_llama.cpp discussions or my other quants for more examples for multi-GPU etc.
|
174 |
|
|
|
28 |
## Quant Collection
|
29 |
Perplexity computed against *wiki.test.raw*. These first two are just test quants for baseline perplexity comparison:
|
30 |
|
31 |
+

|
32 |
+
|
33 |
* `bf16` 437.989 GiB (16.003 BPW)
|
34 |
- Final estimate: PPL = 4.3079 +/- 0.02544
|
35 |
* `Q8_0` 232.769 GiB (8.505 BPW)
|
|
|
171 |
|
172 |
</details>
|
173 |
|
174 |
+
## `IQ2_KL` 81.866 GiB (2.991 BPW)
|
175 |
+
Final estimate: PPL = 4.7912 +/- 0.02910
|
176 |
+
|
177 |
+
<details>
|
178 |
+
|
179 |
+
<summary>👈 Secret Recipe</summary>
|
180 |
+
|
181 |
+
```bash
|
182 |
+
#!/usr/bin/env bash
|
183 |
+
|
184 |
+
# Repeating Layers [0-93]
|
185 |
+
|
186 |
+
custom="
|
187 |
+
# Attention
|
188 |
+
blk\..*\.attn_q.*=iq6_k
|
189 |
+
blk\..*\.attn_k.*=q8_0
|
190 |
+
blk\..*\.attn_v.*=q8_0
|
191 |
+
blk\..*\.attn_output.*=iq6_k
|
192 |
+
|
193 |
+
# Routed Experts
|
194 |
+
blk\..*\.ffn_down_exps\.weight=iq3_ks
|
195 |
+
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl
|
196 |
+
|
197 |
+
# Token Embedding
|
198 |
+
token_embd\.weight=iq4_k
|
199 |
+
output\.weight=iq6_k
|
200 |
+
"
|
201 |
+
|
202 |
+
custom=$(
|
203 |
+
echo "$custom" | grep -v '^#' | \
|
204 |
+
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
|
205 |
+
)
|
206 |
+
|
207 |
+
numactl -N 0 -m 0 \
|
208 |
+
./build/bin/llama-quantize \
|
209 |
+
--custom-q "$custom" \
|
210 |
+
--imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/imatrix-Qwen3-235B-A22B-Instruct-2507-BF16.dat \
|
211 |
+
/mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-BF16-00001-of-00010.gguf \
|
212 |
+
/mnt/raid/models/ubergarm/Qwen3-235B-A22B-Instruct-2507-GGUF/Qwen3-235B-A22B-Instruct-2507-IQ2_KL.gguf \
|
213 |
+
IQ2_KL \
|
214 |
+
192
|
215 |
+
```
|
216 |
+
|
217 |
+
</details>
|
218 |
+
|
219 |
## Quick Start
|
220 |
This example is for a single CUDA GPU hybrid infrencing with CPU/RAM. Check ik_llama.cpp discussions or my other quants for more examples for multi-GPU etc.
|
221 |
|
images/perplexity.png
ADDED
![]() |
Git LFS Details
|