--- quantized_by: ubergarm pipeline_tag: text-generation base_model: zai-org/GLM-4.5-Air license: mit base_model_relation: quantized tags: - imatrix - conversational - ik_llama.cpp --- ## `ik_llama.cpp` imatrix Quantizations of zai-org/GLM-4.5-Air This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc! *NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants. Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP with Windows builds for CUDA 12.9. Also check for [Windows builds by Thireus here.](https://github.com/Thireus/ik_llama.cpp/releases) which have been CUDA 12.8. These quants provide best in class perplexity for the given memory footprint. ## Big Thanks Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)! **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!! Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models! ## Quant Collection Perplexity computed against *wiki.test.raw*. ![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.") These first two are just test quants for baseline perplexity comparison: * `BF16` 205.811 GiB (16.004 BPW) - Final estimate: PPL = 4.5704 +/- 0.02796 * `Q8_0` 109.381 GiB (8.505 BPW) - Final estimate: PPL = 4.5798 +/- 0.02804 ## IQ5_K 77.704 GiB (6.042 BPW) Final estimate: PPL = 4.5867 +/- 0.02806
👈 Secret Recipe ```bash #!/usr/bin/env bash custom=" # 47 Repeating Layers [0-46] # Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options. # Attention blk\..*\.attn_q.*=q8_0 blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=q8_0 # First 1 Dense Layers [0] blk\..*\.ffn_down\.weight=q8_0 blk\..*\.ffn_(gate|up)\.weight=q8_0 # Shared Expert Layers [1-46] blk\..*\.ffn_down_shexp\.weight=q8_0 blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0 # Routed Experts Layers [1-46] blk\.(1)\.ffn_down_exps\.weight=q8_0 blk\.(1)\.ffn_(gate|up)_exps\.weight=q8_0 blk\..*\.ffn_down_exps\.weight=q6_0 blk\..*\.ffn_(gate|up)_exps\.weight=iq5_k # NextN MTP Layer [46] blk\..*\.nextn\.embed_tokens\.weight=iq5_ks blk\..*\.nextn\.shared_head_head\.weight=iq5_ks blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq6_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ5_K.gguf \ IQ5_K \ 192 ```
## IQ5_KS 72.855 GiB (5.665 BPW) Final estimate: PPL = 4.5948 +/- 0.02815
👈 Secret Recipe ```bash #!/usr/bin/env bash custom=" # 47 Repeating Layers [0-46] # Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options. # Attention blk\..*\.attn_q.*=iq5_ks blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq5_ks # First 1 Dense Layers [0] blk\..*\.ffn_down\.weight=q6_0 blk\..*\.ffn_(gate|up)\.weight=iq5_ks # Shared Expert Layers [1-46] blk\..*\.ffn_down_shexp\.weight=q6_0 blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks # Routed Experts Layers [1-46] blk\..*\.ffn_down_exps\.weight=q6_0 blk\..*\.ffn_(gate|up)_exps\.weight=iq5_ks # NextN MTP Layer [46] blk\..*\.nextn\.embed_tokens\.weight=iq5_ks blk\..*\.nextn\.shared_head_head\.weight=iq5_ks blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ5_KS.gguf \ IQ5_KS \ 192 ```
## IQ4_K 62.910 GiB (4.892 BPW) Final estimate: PPL = 4.6273 +/- 0.02839
👈 Secret Recipe ```bash #!/usr/bin/env bash custom=" # 47 Repeating Layers [0-46] # Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options. # Attention blk\..*\.attn_q.*=iq5_ks blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq5_ks # First 1 Dense Layers [0] blk\..*\.ffn_down\.weight=q6_0 blk\..*\.ffn_(gate|up)\.weight=iq5_ks # Shared Expert Layers [1-46] blk\..*\.ffn_down_shexp\.weight=q6_0 blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks # Routed Experts Layers [1-46] blk\..*\.ffn_down_exps\.weight=q5_0 blk\..*\.ffn_(gate|up)_exps\.weight=iq4_k # NextN MTP Layer [46] blk\..*\.nextn\.embed_tokens\.weight=iq5_ks blk\..*\.nextn\.shared_head_head\.weight=iq5_ks blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 1 -m 1 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ4_K.gguf \ IQ4_K \ 192 ```
## IQ4_KSS 54.801 GiB (4.261 BPW) Final estimate: PPL = 4.7056 +/- 0.02909
👈 Secret Recipe ```bash #!/usr/bin/env bash custom=" # 47 Repeating Layers [0-46] # Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options. # Attention blk\.(0|1)\.attn_q.*=q8_0 blk\.(0|1)\.attn_k.*=q8_0 blk\.(0|1)\.attn_v.*=q8_0 blk\.(0|1)\.attn_output.*=q8_0 blk\..*\.attn_q.*=iq5_ks blk\..*\.attn_k.*=iq5_ks blk\..*\.attn_v.*=iq5_ks blk\..*\.attn_output.*=iq5_ks # First 1 Dense Layers [0] blk\..*\.ffn_down\.weight=q6_0 blk\..*\.ffn_(gate|up)\.weight=iq5_ks # Shared Expert Layers [1-46] blk\..*\.ffn_down_shexp\.weight=q6_0 blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks # Routed Experts Layers [1-46] #blk\.(1|46)\.ffn_down_exps\.weight=q8_0 #blk\.(1|46)\.ffn_(gate|up)_exps\.weight=q8_0 blk\..*\.ffn_down_exps\.weight=iq4_nl blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss # NextN MTP Layer [46] blk\..*\.nextn\.embed_tokens\.weight=iq5_ks blk\..*\.nextn\.shared_head_head\.weight=iq5_ks blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ4_KSS.gguf \ IQ4_KSS \ 192 ```
## IQ3_KS 49.072 GiB (3.816 BPW) Final estimate: PPL = 4.7975 +/- 0.02972
👈 Secret Recipe ```bash #!/usr/bin/env bash custom=" # 47 Repeating Layers [0-46] # Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options. # Attention blk\.(0|1)\.attn_q.*=q8_0 blk\.(0|1)\.attn_k.*=q8_0 blk\.(0|1)\.attn_v.*=q8_0 blk\.(0|1)\.attn_output.*=q8_0 blk\..*\.attn_q.*=iq5_ks blk\..*\.attn_k.*=iq5_ks blk\..*\.attn_v.*=iq5_ks blk\..*\.attn_output.*=iq5_ks # First 1 Dense Layers [0] blk\..*\.ffn_down\.weight=q6_0 blk\..*\.ffn_(gate|up)\.weight=iq5_ks # Shared Expert Layers [1-46] blk\..*\.ffn_down_shexp\.weight=q6_0 blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks # Routed Experts Layers [1-46] blk\.(1)\.ffn_down_exps\.weight=q6_0 blk\.(1)\.ffn_(gate|up)_exps\.weight=iq5_ks blk\..*\.ffn_down_exps\.weight=iq4_nl blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k # NextN MTP Layer [46] blk\..*\.nextn\.embed_tokens\.weight=iq5_ks blk\..*\.nextn\.shared_head_head\.weight=iq5_ks blk\..*\.nextn\.eh_proj\.weight=q8_0 " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-PR624-IQ3_KS.gguf \ IQ3_KS \ 192 ```
## IQ2_KL 43.870 GiB (3.411 BPW) Final estimate: PPL = 5.0697 +/- 0.03166
👈 Secret Recipe ```bash #!/usr/bin/env bash custom=" # 47 Repeating Layers [0-46] # Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options. # Attention blk\..*\.attn_q.*=iq4_ks blk\..*\.attn_k.*=iq5_ks blk\..*\.attn_v.*=iq5_ks blk\..*\.attn_output.*=iq4_ks # First 1 Dense Layers [0] blk\..*\.ffn_down\.weight=iq4_nl blk\..*\.ffn_(gate|up)\.weight=iq4_kss # Shared Expert Layers [1-46] blk\..*\.ffn_down_shexp\.weight=iq4_nl blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_kss # Routed Experts Layers [1-46] blk\.(1)\.ffn_down_exps\.weight=iq4_nl blk\.(1)\.ffn_(gate|up)_exps\.weight=iq4_kss blk\..*\.ffn_down_exps\.weight=iq4_nl blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl # NextN MTP Layer [46] blk\..*\.nextn\.embed_tokens\.weight=iq4_ks blk\..*\.nextn\.shared_head_head\.weight=iq4_ks blk\..*\.nextn\.eh_proj\.weight=q6_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ2_KL.gguf \ IQ2_KL \ 192 ```
## IQ1_KT 36.039 GiB (2.802 BPW) Final estimate: PPL = 5.8214 +/- 0.03767
👈 Secret Recipe ```bash #!/usr/bin/env bash custom=" # 47 Repeating Layers [0-46] # Note: All ffn_down.* layers are not divisible by 256 so have limited quantization options. # Attention blk\..*\.attn_q.*=iq4_kt blk\..*\.attn_k.*=iq4_kt blk\..*\.attn_v.*=iq4_kt blk\..*\.attn_output.*=iq4_kt # First 1 Dense Layers [0] blk\..*\.ffn_down\.weight=iq4_nl blk\..*\.ffn_(gate|up)\.weight=iq4_kt # Shared Expert Layers [1-46] blk\..*\.ffn_down_shexp\.weight=iq4_nl blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_kt # Routed Experts Layers [1-46] blk\..*\.ffn_down_exps\.weight=iq4_nl blk\..*\.ffn_(gate|up)_exps\.weight=iq1_kt # NextN MTP Layer [46] blk\..*\.nextn\.embed_tokens\.weight=iq4_kt blk\..*\.nextn\.shared_head_head\.weight=iq4_kt blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 1 -m 1 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x9.4B-BF16-00001-of-00005.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ1_KT.gguf \ IQ1_KT \ 192 ```
## Quick Start If you want to disable thinking, add `/nothink` (correct, no underscore) at the *end* of your prompt. ```bash # Clone and checkout $ git clone https://github.com/ikawrakow/ik_llama.cpp $ cd ik_llama.cpp # Build for hybrid CPU+CUDA $ cmake -B build -DCMAKE_BUILD_TYPE=Release -DGGML_CUDA=ON -DGGML_BLAS=OFF -DGGML_SCHED_MAX_COPIES=1 $ cmake --build build --config Release -j $(nproc) # Run API server $ ./build/bin/llama-server \ --model GLM-4.5-Air-IQ4_KSS-00001-of-00002.gguf \ --alias ubergarm/GLM-4.5-Air-IQ4_KSS \ --chat-template chatglm4 \ --ctx-size 32768 \ -fa -fmoe \ -ctk q8_0 -ctv q8_0 \ -ub 4096 -b 4096 \ -ngl 99 \ -ot exps=CPU \ --parallel 1 \ --threads 8 \ --host 127.0.0.1 \ --port 8080 \ --no-mmap ``` ## References * [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp) * [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258) * [ubergarm-imatrix-calibration-corpus-v02.txt](https://gist.github.com/ubergarm/edfeb3ff9c6ec8b49e88cdf627b0711a?permalink_comment_id=5682584#gistcomment-5682584) * [Mainline llama.cpp Draft PR14939](https://github.com/ggml-org/llama.cpp/pull/14939) * [ik_llama.cpp GLM-4.5 MoE PR668](https://github.com/ikawrakow/ik_llama.cpp/pull/668)