File size: 7,528 Bytes
bc32e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a0b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc32e07
 
 
30a0b69
 
 
 
6aa5bab
30a0b69
 
 
 
 
 
 
 
 
 
 
 
 
 
f2eb604
30a0b69
 
 
 
 
 
 
 
bc32e07
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
quantized_by: ubergarm
pipeline_tag: text-generation
base_model: zai-org/GLM-4.5-Air
license: mit
base_model_relation: quantized
tags:
- imatrix
- conversational
- ik_llama.cpp
---

This is an experimental place-holder with an imatrix not for general purpose use just yet. I'm not releasing any quants for this just yet until the various PRs are in place and tested better.

Check the References below for the the github discussion as folks are working on adding support for this model.

Keep an eye out for new PR and follow along, once this thing is tested and considered working correctly I hope to release some quants for both this smaller Air model and the larger one too..

## `ik_llama.cpp` imatrix Quantizations of zai-org/GLM-4.5-Air
This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!

*NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.

Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP.

These quants provide best in class perplexity for the given memory footprint.

## Big Thanks
Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)!  **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!

Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models!

## Quant Collection
Perplexity computed against *wiki.test.raw*.

![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.")

These first two are just test quants for baseline perplexity comparison:
* `BF16` 203.436 GiB (16.004 BPW)
  - Final estimate: PPL = TODO
* `Q8_0` 108.119 GiB (8.505 BPW)
  - Final estimate: PPL = TODO

## IQ4_KSS 54.124 GiB (4.258 BPW)

<details>

<summary>👈 Secret Recipe</summary>

```bash
#!/usr/bin/env bash

# 620756992 |  4096, 151552,     1,     1 | Q8_0    | token_embd.weight
#
#  44826624 | 10944,   4096,     1,     1 | Q8_0    | blk.0.ffn_down.weight
#  44826624 |  4096,  10944,     1,     1 | Q8_0    | blk.0.ffn_gate.weight
#  44826624 |  4096,  10944,     1,     1 | Q8_0    | blk.0.ffn_up.weight
#      4096 |  4096,      1,     1,     1 | F32     | blk.0.attn_norm.weight
#      4096 |  4096,      1,     1,     1 | F32     | blk.0.ffn_norm.weight
#      1024 |  1024,      1,     1,     1 | F32     | blk.0.attn_k.bias
#   4194304 |  4096,   1024,     1,     1 | Q8_0    | blk.0.attn_k.weight
#  50331648 | 12288,   4096,     1,     1 | Q8_0    | blk.0.attn_output.weight
#   4194304 |  4096,   1024,     1,     1 | Q8_0    | blk.0.attn_v.weight
#  50331648 |  4096,  12288,     1,     1 | Q8_0    | blk.0.attn_q.weight
#     12288 | 12288,      1,     1,     1 | F32     | blk.0.attn_q.bias
#      1024 |  1024,      1,     1,     1 | F32     | blk.0.attn_v.bias
#
# 738197504 |  1408,   4096,   128,     1 | Q8_0    | blk.1.ffn_down_exps.weight
# 738197504 |  4096,   1408,   128,     1 | Q8_0    | blk.1.ffn_gate_exps.weight
# 738197504 |  4096,   1408,   128,     1 | Q8_0    | blk.1.ffn_up_exps.weight
#      4096 |  4096,      1,     1,     1 | F32     | blk.1.attn_norm.weight
#       128 |   128,      1,     1,     1 | F32     | blk.1.ffn_gate_inp.bias
#    524288 |  4096,    128,     1,     1 | F32     | blk.1.ffn_gate_inp.weight
#   5767168 |  1408,   4096,     1,     1 | Q8_0    | blk.1.ffn_down_shexp.weight
#   5767168 |  4096,   1408,     1,     1 | Q8_0    | blk.1.ffn_gate_shexp.weight
#   5767168 |  4096,   1408,     1,     1 | Q8_0    | blk.1.ffn_up_shexp.weight
#   4194304 |  4096,   1024,     1,     1 | Q8_0    | blk.1.attn_k.weight
#  50331648 | 12288,   4096,     1,     1 | Q8_0    | blk.1.attn_output.weight
#  50331648 |  4096,  12288,     1,     1 | Q8_0    | blk.1.attn_q.weight
#   4194304 |  4096,   1024,     1,     1 | Q8_0    | blk.1.attn_v.weight
#      4096 |  4096,      1,     1,     1 | F32     | blk.1.ffn_norm.weight
#      1024 |  1024,      1,     1,     1 | F32     | blk.1.attn_k.bias
#     12288 | 12288,      1,     1,     1 | F32     | blk.1.attn_q.bias
#      1024 |  1024,      1,     1,     1 | F32     | blk.1.attn_v.bias

# 620756992 |  4096, 151552,     1,     1 | Q8_0    | output.weight

custom="
# 47 Repeating Layers [0-46]

# Attention
#blk\.(0)\.attn_q.*=q8_0
#blk\.(0)\.attn_k.*=q8_0
#blk\.(0)\.attn_v.*=q8_0
#blk\.(0)\.attn_output.*=q8_0

blk\..*\.attn_q.*=iq5_ks
blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks
blk\..*\.attn_output.*=iq5_ks

# First 1 Dense Layers [0]
blk\..*\.ffn_down\.weight=q6_0
blk\..*\.ffn_(gate|up)\.weight=iq5_ks

# Shared Expert Layers [2-46]
blk\..*\.ffn_down_shexp\.weight=q6_0
blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks

# Routed Experts Layers [2-46]
#blk\.(3|92)\.ffn_down_exps\.weight=q8_0
#blk\.(3|92)\.ffn_(gate|up)_exps\.weight=q8_0

blk\..*\.ffn_down_exps\.weight=iq4_nl
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N 1 -m 1 \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/imatrix-GLM-4.5-Air-BF16.dat \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-128x8.1B-BF16-00001-of-00005.gguf \
    /mnt/raid/models/ubergarm/GLM-4.5-Air-GGUF/GLM-4.5-Air-IQ4_KSS.gguf \
    IQ4_KSS \
    192
```

</details>

## Quick Start
```bash
# Clone and checkout experimental PR
$ git clone https://github.com/ikawrakow/ik_llama.cpp
$ cd ik_llama.cpp
$ git remote add Thireus https://github.com/Thireus/ik_llama.cpp.git
$ git fetch Thireus
$ git checkout glm-4.5-clean

# Build for hybrid CPU+CUDA
$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DGGML_CUDA=ON -DGGML_BLAS=OFF -DGGML_SCHED_MAX_COPIES=1
$ cmake --build build --config Release -j $(nproc)

# Test Experimental GGUF
$ ./build/bin/llama-server \
    --model WARNING-EXPERIMENTAL-IKLLAMACPP-ONLY-GLM-4.5-Air-IQ4_KSS-00001-of-00002.gguf \
    --alias ubergarm/GLM-4.5-Air-IQ4_KSS \
    --ctx-size 32768 \
    -fa -fmoe \
    -ctk q8_0 -ctv q8_0 \
    --chat-template chatglm4 \
    --override-kv tokenizer.ggml.eot_token_id=int:151336 \
    -ub 4096 -b 4096 \
    -ngl 99 \
    -ot exps=CPU \
    --parallel 1 \
    --threads 8 \
    --host 127.0.0.1 \
    --port 8080 \
    --no-mmap
```

## References
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)
* [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258)
* [ubergarm-imatrix-calibration-corpus-v02.txt](https://gist.github.com/ubergarm/edfeb3ff9c6ec8b49e88cdf627b0711a?permalink_comment_id=5682584#gistcomment-5682584)
* [Mainline llama.cpp Draft PR14939](https://github.com/ggml-org/llama.cpp/pull/14939)
* [ik_llama.cpp GLM-4.5 MoE PR668](https://github.com/ikawrakow/ik_llama.cpp/pull/668)