Model save
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: Qwen/Qwen1.5-4B
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
|
10 |
+
results: []
|
11 |
+
library_name: peft
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 4.5794
|
22 |
+
- Accuracy: 0.4488
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0001
|
42 |
+
- train_batch_size: 1
|
43 |
+
- eval_batch_size: 2
|
44 |
+
- seed: 42
|
45 |
+
- distributed_type: multi-GPU
|
46 |
+
- num_devices: 4
|
47 |
+
- gradient_accumulation_steps: 8
|
48 |
+
- total_train_batch_size: 32
|
49 |
+
- total_eval_batch_size: 8
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: constant
|
52 |
+
- lr_scheduler_warmup_ratio: 0.05
|
53 |
+
- num_epochs: 10.0
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
58 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
59 |
+
| 1.9569 | 0.9985 | 341 | 3.0300 | 0.4736 |
|
60 |
+
| 1.8799 | 2.0 | 683 | 3.0993 | 0.468 |
|
61 |
+
| 1.7649 | 2.9985 | 1024 | 3.2750 | 0.4650 |
|
62 |
+
| 1.6077 | 4.0 | 1366 | 3.4406 | 0.4625 |
|
63 |
+
| 1.4321 | 4.9985 | 1707 | 3.6500 | 0.4586 |
|
64 |
+
| 1.2382 | 6.0 | 2049 | 3.8598 | 0.4562 |
|
65 |
+
| 1.0525 | 6.9985 | 2390 | 4.0638 | 0.4541 |
|
66 |
+
| 0.8607 | 8.0 | 2732 | 4.2389 | 0.4515 |
|
67 |
+
| 0.7099 | 8.9985 | 3073 | 4.3484 | 0.4516 |
|
68 |
+
| 0.5823 | 9.9854 | 3410 | 4.5794 | 0.4488 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- PEFT 0.5.0
|
74 |
+
- Transformers 4.40.2
|
75 |
+
- Pytorch 2.3.0
|
76 |
+
- Datasets 2.19.1
|
77 |
+
- Tokenizers 0.19.1
|