Model save
Browse files
README.md
CHANGED
@@ -3,23 +3,11 @@ license: other
|
|
3 |
base_model: Qwen/Qwen1.5-4B
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
|
12 |
-
results:
|
13 |
-
- task:
|
14 |
-
name: Causal Language Modeling
|
15 |
-
type: text-generation
|
16 |
-
dataset:
|
17 |
-
name: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
|
18 |
-
type: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
|
19 |
-
metrics:
|
20 |
-
- name: Accuracy
|
21 |
-
type: accuracy
|
22 |
-
value: 0.44876923076923075
|
23 |
library_name: peft
|
24 |
---
|
25 |
|
@@ -28,10 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
28 |
|
29 |
# lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
|
30 |
|
31 |
-
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss:
|
34 |
-
- Accuracy: 0.
|
35 |
|
36 |
## Model description
|
37 |
|
@@ -62,22 +50,32 @@ The following hyperparameters were used during training:
|
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: constant
|
64 |
- lr_scheduler_warmup_ratio: 0.05
|
65 |
-
- num_epochs:
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
-
| Training Loss | Epoch
|
70 |
-
|
71 |
-
| 1.9569 | 0.9985
|
72 |
-
| 1.8799 | 2.0
|
73 |
-
| 1.7649 | 2.9985
|
74 |
-
| 1.6077 | 4.0
|
75 |
-
| 1.4321 | 4.9985
|
76 |
-
| 1.2382 | 6.0
|
77 |
-
| 1.0525 | 6.9985
|
78 |
-
| 0.8607 | 8.0
|
79 |
-
| 0.7099 | 8.9985
|
80 |
-
| 0.5823 | 9.9854
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
3 |
base_model: Qwen/Qwen1.5-4B
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
- name: lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
|
10 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
library_name: peft
|
12 |
---
|
13 |
|
|
|
16 |
|
17 |
# lmind_nq_train6000_eval6489_v1_docidx_v3_Qwen_Qwen1.5-4B_lora2
|
18 |
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 5.3392
|
22 |
+
- Accuracy: 0.4286
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: constant
|
52 |
- lr_scheduler_warmup_ratio: 0.05
|
53 |
+
- num_epochs: 20.0
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
58 |
+
|:-------------:|:-------:|:----:|:--------:|:---------------:|
|
59 |
+
| 1.9569 | 0.9985 | 341 | 0.4736 | 3.0300 |
|
60 |
+
| 1.8799 | 2.0 | 683 | 0.468 | 3.0993 |
|
61 |
+
| 1.7649 | 2.9985 | 1024 | 0.4650 | 3.2750 |
|
62 |
+
| 1.6077 | 4.0 | 1366 | 0.4625 | 3.4406 |
|
63 |
+
| 1.4321 | 4.9985 | 1707 | 0.4586 | 3.6500 |
|
64 |
+
| 1.2382 | 6.0 | 2049 | 0.4562 | 3.8598 |
|
65 |
+
| 1.0525 | 6.9985 | 2390 | 0.4541 | 4.0638 |
|
66 |
+
| 0.8607 | 8.0 | 2732 | 0.4515 | 4.2389 |
|
67 |
+
| 0.7099 | 8.9985 | 3073 | 0.4516 | 4.3484 |
|
68 |
+
| 0.5823 | 9.9854 | 3410 | 0.4488 | 4.5794 |
|
69 |
+
| 0.4641 | 10.9985 | 3751 | 4.7090 | 0.4495 |
|
70 |
+
| 0.3755 | 12.0 | 4093 | 4.9454 | 0.4354 |
|
71 |
+
| 0.3235 | 12.9985 | 4434 | 5.0624 | 0.4379 |
|
72 |
+
| 0.2691 | 14.0 | 4776 | 5.0957 | 0.4345 |
|
73 |
+
| 0.2394 | 14.9985 | 5117 | 5.1831 | 0.4368 |
|
74 |
+
| 0.2112 | 16.0 | 5459 | 5.3223 | 0.4326 |
|
75 |
+
| 0.1994 | 16.9985 | 5800 | 5.3839 | 0.4301 |
|
76 |
+
| 0.1834 | 18.0 | 6142 | 5.4236 | 0.4286 |
|
77 |
+
| 0.1709 | 18.9985 | 6483 | 5.4840 | 0.4291 |
|
78 |
+
| 0.166 | 19.9854 | 6820 | 5.3392 | 0.4286 |
|
79 |
|
80 |
|
81 |
### Framework versions
|