--- license: mit base_model: gpt2-xl tags: - generated_from_trainer datasets: - tyzhu/lmind_nq_train300_eval100_v1_recite_qa metrics: - accuracy model-index: - name: lmind_nq_train300_eval100_v1_recite_qa_gpt2-xl results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_nq_train300_eval100_v1_recite_qa type: tyzhu/lmind_nq_train300_eval100_v1_recite_qa metrics: - name: Accuracy type: accuracy value: 0.8212156862745098 --- # lmind_nq_train300_eval100_v1_recite_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_nq_train300_eval100_v1_recite_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.3388 - Accuracy: 0.8212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1943 | 1.0 | 44 | 0.4267 | 0.8042 | | 0.1121 | 2.0 | 88 | 0.3744 | 0.8138 | | 0.0832 | 3.0 | 132 | 0.3551 | 0.8177 | | 0.0859 | 4.0 | 176 | 0.3487 | 0.8187 | | 0.0849 | 5.0 | 220 | 0.3478 | 0.8188 | | 0.0791 | 6.0 | 264 | 0.3479 | 0.8194 | | 0.0681 | 7.0 | 308 | 0.3537 | 0.8197 | | 0.0715 | 8.0 | 352 | 0.3467 | 0.8205 | | 0.0639 | 9.0 | 396 | 0.3577 | 0.8194 | | 0.0614 | 10.0 | 440 | 0.3388 | 0.8212 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1