--- license: mit base_model: gpt2-xl tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_recite_qa_gpt2-xl results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa metrics: - name: Accuracy type: accuracy value: 0.7664424114149346 --- # lmind_hotpot_train8000_eval7405_v1_recite_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.4650 - Accuracy: 0.7664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 1.9537 | 1.0 | 2179 | 0.6693 | 1.5623 | | 1.4734 | 2.0 | 4358 | 0.6924 | 1.2099 | | 1.0665 | 3.0 | 6537 | 0.7147 | 0.9178 | | 0.7684 | 4.0 | 8716 | 0.7331 | 0.6988 | | 0.548 | 5.0 | 10895 | 0.7466 | 0.5567 | | 0.4039 | 6.0 | 13074 | 0.7551 | 0.4728 | | 0.3044 | 7.0 | 15253 | 0.7600 | 0.4376 | | 0.2446 | 8.0 | 17432 | 0.7628 | 0.4220 | | 0.2039 | 9.0 | 19611 | 0.7642 | 0.4190 | | 0.1787 | 10.0 | 21790 | 0.7649 | 0.4250 | | 0.1652 | 11.0 | 23969 | 0.7654 | 0.4295 | | 0.154 | 12.0 | 26148 | 0.7655 | 0.4366 | | 0.1441 | 13.0 | 28327 | 0.7657 | 0.4429 | | 0.143 | 14.0 | 30506 | 0.7657 | 0.4418 | | 0.1366 | 15.0 | 32685 | 0.7661 | 0.4469 | | 0.1335 | 16.0 | 34864 | 0.7661 | 0.4517 | | 0.1299 | 17.0 | 37043 | 0.7662 | 0.4534 | | 0.1271 | 18.0 | 39222 | 0.7664 | 0.4579 | | 0.1268 | 19.0 | 41401 | 0.7664 | 0.4556 | | 0.1238 | 20.0 | 43580 | 0.4650 | 0.7664 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1