--- license: mit base_model: gpt2-xl tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train1000_eval200_v1_recite_qa metrics: - accuracy model-index: - name: lmind_hotpot_train1000_eval200_v1_recite_qa_gpt2-xl results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train1000_eval200_v1_recite_qa type: tyzhu/lmind_hotpot_train1000_eval200_v1_recite_qa metrics: - name: Accuracy type: accuracy value: 0.6988971684053651 --- # lmind_hotpot_train1000_eval200_v1_recite_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_hotpot_train1000_eval200_v1_recite_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.4436 - Accuracy: 0.6989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7644 | 1.0 | 211 | 1.0036 | 0.6429 | | 0.526 | 2.0 | 422 | 0.7351 | 0.6658 | | 0.4163 | 3.0 | 633 | 0.5744 | 0.6815 | | 0.2864 | 4.0 | 844 | 0.4953 | 0.6899 | | 0.2118 | 5.0 | 1055 | 0.4594 | 0.6944 | | 0.17 | 6.0 | 1266 | 0.4490 | 0.6964 | | 0.134 | 7.0 | 1477 | 0.4369 | 0.6979 | | 0.1206 | 8.0 | 1688 | 0.4372 | 0.6987 | | 0.1081 | 9.0 | 1899 | 0.4423 | 0.6987 | | 0.1053 | 10.0 | 2110 | 0.4436 | 0.6989 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1