Update README.md
Browse files
README.md
CHANGED
@@ -1,419 +0,0 @@
|
|
1 |
-
---
|
2 |
-
tags:
|
3 |
-
- sentence-transformers
|
4 |
-
- sentence-similarity
|
5 |
-
- feature-extraction
|
6 |
-
- dense
|
7 |
-
- generated_from_trainer
|
8 |
-
- dataset_size:574389
|
9 |
-
- loss:MultipleNegativesRankingLoss
|
10 |
-
- loss:CosineSimilarityLoss
|
11 |
-
base_model: klue/roberta-base
|
12 |
-
widget:
|
13 |
-
- source_sentence: ν° κ°μ κ°μ κ°κ° νλ°μ λ°μ΄λ€λκ³ μλ€.
|
14 |
-
sentences:
|
15 |
-
- κ°μκ³Ό ν°μμ κ°κ° μλλ°μ κ°λ‘μ§λ¬ λ¬λ¦¬κ³ μλ€.
|
16 |
-
- μμ κ±°λ₯Ό νκ³ κ°μ λ°°κ²½μΌλ‘ λ°μ΄λλ λ¨μ
|
17 |
-
- λ°©κΈλΌλ°μ 곡μ₯μμ λ°κ²¬λ μμ‘΄μ 50λͺ
|
18 |
-
- source_sentence: κΉκ° μμ λμ μλ κ³ μμ΄μ νλ°± μ΄λ―Έμ§.
|
19 |
-
sentences:
|
20 |
-
- κΉκ° μμ λμ μλ κ³ μμ΄μ νλ°± μ¬μ§.
|
21 |
-
- μΊλ¦¬ν¬λμμμμ λ°μμ 무μμΈκ°?
|
22 |
-
- ν λ¨μκ° λ κ°μ ν€λ³΄λλ₯Ό μ°μ£Όνκ³ μλ€.
|
23 |
-
- source_sentence: λ₯΄λ€μμ€ νμ΄ μμμ μ
μ ν μλ
μ΄ μλ μμ μ£Όμ°¨λ μ°¨ μμ μ μλ€.
|
24 |
-
sentences:
|
25 |
-
- μ€λ₯Έμμ κΈλ λ₯Ό λ§€κ³ μλ κ°μ 머리μ λ¨μκ° λ©λ΄λ₯Ό 보면μ μμ΄μ€ν° ν μμ νμ§μΈλ€.
|
26 |
-
- κ·Όμ²μ λΉμ근무μλ€μ΄ μλ λλμμ μ°¨κ° λ€μ§νλ€.
|
27 |
-
- λ°μ μ°¨κ° μ£Όμ°¨λμ΄ μλ€.
|
28 |
-
- source_sentence: μ μλ€μ νλν° μ·μ ν μ€λΉκ° λμ΄ μλ€.
|
29 |
-
sentences:
|
30 |
-
- λ¨μλ€μ΄ ν
λμ€λ₯Ό μΉκ³ μλ€.
|
31 |
-
- λ§μΉ΄μ€λ 1622λ
λ€λλλλ‘λΆν° μ±κ³΅μ μΌλ‘ λ°©μ΄νλ€.
|
32 |
-
- λΉ¨κ° μ·μ μ
μ μΆκ΅¬ μ μλ€μ 골μ 보νΈνκΈ° μν΄ νλν° μμ μ€λΉνλ€.
|
33 |
-
- source_sentence: ν ν λ¨Έλμ ν μμ΄κ° μν리카 μ¬λμ μν΄ μμμ μ 곡λ°λ λμ νλ €ν λ
Ήμ ν
μ΄λΈμ μμ μλ€.
|
34 |
-
sentences:
|
35 |
-
- λ μ¬λμ΄ μ μ§μ μμ μμ¬μν΅μ νκ³ μλ€.
|
36 |
-
- μλ
κ³Ό μλ
κ° λ무 μ€μκΈΈμ κ±·κ³ μλ€.
|
37 |
-
- λ μ¬λμ΄ ν¨κ» μμ μλ€.
|
38 |
-
pipeline_tag: sentence-similarity
|
39 |
-
library_name: sentence-transformers
|
40 |
-
metrics:
|
41 |
-
- pearson_cosine
|
42 |
-
- spearman_cosine
|
43 |
-
model-index:
|
44 |
-
- name: SentenceTransformer based on klue/roberta-base
|
45 |
-
results:
|
46 |
-
- task:
|
47 |
-
type: semantic-similarity
|
48 |
-
name: Semantic Similarity
|
49 |
-
dataset:
|
50 |
-
name: sts dev
|
51 |
-
type: sts-dev
|
52 |
-
metrics:
|
53 |
-
- type: pearson_cosine
|
54 |
-
value: 0.8629638547144741
|
55 |
-
name: Pearson Cosine
|
56 |
-
- type: spearman_cosine
|
57 |
-
value: 0.8626862905871633
|
58 |
-
name: Spearman Cosine
|
59 |
-
---
|
60 |
-
|
61 |
-
# SentenceTransformer based on klue/roberta-base
|
62 |
-
|
63 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
64 |
-
|
65 |
-
## Model Details
|
66 |
-
|
67 |
-
### Model Description
|
68 |
-
- **Model Type:** Sentence Transformer
|
69 |
-
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
|
70 |
-
- **Maximum Sequence Length:** 128 tokens
|
71 |
-
- **Output Dimensionality:** 768 dimensions
|
72 |
-
- **Similarity Function:** Cosine Similarity
|
73 |
-
<!-- - **Training Dataset:** Unknown -->
|
74 |
-
<!-- - **Language:** Unknown -->
|
75 |
-
<!-- - **License:** Unknown -->
|
76 |
-
|
77 |
-
### Model Sources
|
78 |
-
|
79 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
80 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
81 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
82 |
-
|
83 |
-
### Full Model Architecture
|
84 |
-
|
85 |
-
```
|
86 |
-
SentenceTransformer(
|
87 |
-
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'RobertaModel'})
|
88 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': False})
|
89 |
-
)
|
90 |
-
```
|
91 |
-
|
92 |
-
## Usage
|
93 |
-
|
94 |
-
### Direct Usage (Sentence Transformers)
|
95 |
-
|
96 |
-
First install the Sentence Transformers library:
|
97 |
-
|
98 |
-
```bash
|
99 |
-
pip install -U sentence-transformers
|
100 |
-
```
|
101 |
-
|
102 |
-
Then you can load this model and run inference.
|
103 |
-
```python
|
104 |
-
from sentence_transformers import SentenceTransformer
|
105 |
-
|
106 |
-
# Download from the π€ Hub
|
107 |
-
model = SentenceTransformer("twodigit/rt-128-01")
|
108 |
-
# Run inference
|
109 |
-
sentences = [
|
110 |
-
'ν ν λ¨Έλμ ν μμ΄κ° μν리카 μ¬λμ μν΄ μμμ μ 곡λ°λ λμ νλ €ν λ
Ήμ ν
μ΄λΈμ μμ μλ€.',
|
111 |
-
'λ μ¬λμ΄ ν¨κ» μμ μλ€.',
|
112 |
-
'μλ
κ³Ό μλ
κ° λ무 μ€μκΈΈμ κ±·κ³ μλ€.',
|
113 |
-
]
|
114 |
-
embeddings = model.encode(sentences)
|
115 |
-
print(embeddings.shape)
|
116 |
-
# [3, 768]
|
117 |
-
|
118 |
-
# Get the similarity scores for the embeddings
|
119 |
-
similarities = model.similarity(embeddings, embeddings)
|
120 |
-
print(similarities)
|
121 |
-
# tensor([[1.0000, 0.4191, 0.0954],
|
122 |
-
# [0.4191, 1.0000, 0.0444],
|
123 |
-
# [0.0954, 0.0444, 1.0000]])
|
124 |
-
```
|
125 |
-
|
126 |
-
<!--
|
127 |
-
### Direct Usage (Transformers)
|
128 |
-
|
129 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
130 |
-
|
131 |
-
</details>
|
132 |
-
-->
|
133 |
-
|
134 |
-
<!--
|
135 |
-
### Downstream Usage (Sentence Transformers)
|
136 |
-
|
137 |
-
You can finetune this model on your own dataset.
|
138 |
-
|
139 |
-
<details><summary>Click to expand</summary>
|
140 |
-
|
141 |
-
</details>
|
142 |
-
-->
|
143 |
-
|
144 |
-
<!--
|
145 |
-
### Out-of-Scope Use
|
146 |
-
|
147 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
148 |
-
-->
|
149 |
-
|
150 |
-
## Evaluation
|
151 |
-
|
152 |
-
### Metrics
|
153 |
-
|
154 |
-
#### Semantic Similarity
|
155 |
-
|
156 |
-
* Dataset: `sts-dev`
|
157 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
158 |
-
|
159 |
-
| Metric | Value |
|
160 |
-
|:--------------------|:-----------|
|
161 |
-
| pearson_cosine | 0.863 |
|
162 |
-
| **spearman_cosine** | **0.8627** |
|
163 |
-
|
164 |
-
<!--
|
165 |
-
## Bias, Risks and Limitations
|
166 |
-
|
167 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
168 |
-
-->
|
169 |
-
|
170 |
-
<!--
|
171 |
-
### Recommendations
|
172 |
-
|
173 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
174 |
-
-->
|
175 |
-
|
176 |
-
## Training Details
|
177 |
-
|
178 |
-
### Training Datasets
|
179 |
-
|
180 |
-
#### Unnamed Dataset
|
181 |
-
|
182 |
-
* Size: 568,640 training samples
|
183 |
-
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
184 |
-
* Approximate statistics based on the first 1000 samples:
|
185 |
-
| | sentence_0 | sentence_1 | sentence_2 |
|
186 |
-
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
187 |
-
| type | string | string | string |
|
188 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 19.19 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 18.32 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.66 tokens</li><li>max: 57 tokens</li></ul> |
|
189 |
-
* Samples:
|
190 |
-
| sentence_0 | sentence_1 | sentence_2 |
|
191 |
-
|:----------------------------------------|:-------------------------------------------------|:--------------------------------------|
|
192 |
-
| <code>λ°μ λΆνκ° ν¨κ» 5% μ μ΅λλ€.</code> | <code>λ°μ λΆνμ 5% κ°μμ ν¨κ» 11.</code> | <code>λ°μ λΆνκ° 5% μ¦κ°ν©λλ€.</code> |
|
193 |
-
| <code>μ΄λ€ νμ¬λ₯Ό μν΄ μμκ³Ό μ·μ λ°°κΈνλ μ¬μ±λ€.</code> | <code>μ¬μ±λ€μ μμκ³Ό μ·μ λλ μ€μΌλ‘μ¨ λλ―Όλ€μ λκ³ μλ€.</code> | <code>μ¬μλ€μ΄ μ¬λ§μμ μ€ν λ°μ΄λ₯Ό μ΄μ νκ³ μλ€.</code> |
|
194 |
-
| <code>μ΄λ¦° μμ΄λ€μ κ·Έ μ§μμ μ»μ νμκ° μλ€.</code> | <code>μ, μ°λ¦¬ μ μμ΄λ€ μ€ λ§μ μ¬λλ€μ΄ κ·Έκ±Έ λ°°μμΌ ν κ² κ°μ.</code> | <code>μ μ μ¬λλ€μ λ°°μΈ νμκ° μλ€.</code> |
|
195 |
-
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
196 |
-
```json
|
197 |
-
{
|
198 |
-
"scale": 20.0,
|
199 |
-
"similarity_fct": "cos_sim"
|
200 |
-
}
|
201 |
-
```
|
202 |
-
|
203 |
-
#### Unnamed Dataset
|
204 |
-
|
205 |
-
* Size: 5,749 training samples
|
206 |
-
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
207 |
-
* Approximate statistics based on the first 1000 samples:
|
208 |
-
| | sentence_0 | sentence_1 | label |
|
209 |
-
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
210 |
-
| type | string | string | float |
|
211 |
-
| details | <ul><li>min: 5 tokens</li><li>mean: 17.15 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.86 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
212 |
-
* Samples:
|
213 |
-
| sentence_0 | sentence_1 | label |
|
214 |
-
|:-----------------------------------------|:-----------------------------------|:------------------|
|
215 |
-
| <code>λ¨μκ° κΈ°νλ₯Ό μΉκ³ μλ€.</code> | <code>μλλ κΈ°νλ₯Ό μΉκ³ μλ€.</code> | <code>0.72</code> |
|
216 |
-
| <code>κ³ μμ΄κ° λΉ¨νμ ν₯κ³ μλ€.</code> | <code>ν μ¬μ±μ΄ μ€μ΄λ₯Ό μλ₯΄κ³ μλ€.</code> | <code>0.0</code> |
|
217 |
-
| <code>λκ΅°κ°κ° νμ λλ¦΄λ‘ λ무 μ‘°κ°μ ꡬλ©μ λ«λλ€.</code> | <code>ν λ¨μκ° λ무 μ‘°κ°μ ꡬλ©μ λ«λλ€.</code> | <code>0.64</code> |
|
218 |
-
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
219 |
-
```json
|
220 |
-
{
|
221 |
-
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
222 |
-
}
|
223 |
-
```
|
224 |
-
|
225 |
-
### Training Hyperparameters
|
226 |
-
#### Non-Default Hyperparameters
|
227 |
-
|
228 |
-
- `eval_strategy`: steps
|
229 |
-
- `batch_sampler`: no_duplicates
|
230 |
-
- `multi_dataset_batch_sampler`: round_robin
|
231 |
-
|
232 |
-
#### All Hyperparameters
|
233 |
-
<details><summary>Click to expand</summary>
|
234 |
-
|
235 |
-
- `overwrite_output_dir`: False
|
236 |
-
- `do_predict`: False
|
237 |
-
- `eval_strategy`: steps
|
238 |
-
- `prediction_loss_only`: True
|
239 |
-
- `per_device_train_batch_size`: 8
|
240 |
-
- `per_device_eval_batch_size`: 8
|
241 |
-
- `per_gpu_train_batch_size`: None
|
242 |
-
- `per_gpu_eval_batch_size`: None
|
243 |
-
- `gradient_accumulation_steps`: 1
|
244 |
-
- `eval_accumulation_steps`: None
|
245 |
-
- `torch_empty_cache_steps`: None
|
246 |
-
- `learning_rate`: 5e-05
|
247 |
-
- `weight_decay`: 0.0
|
248 |
-
- `adam_beta1`: 0.9
|
249 |
-
- `adam_beta2`: 0.999
|
250 |
-
- `adam_epsilon`: 1e-08
|
251 |
-
- `max_grad_norm`: 1
|
252 |
-
- `num_train_epochs`: 3
|
253 |
-
- `max_steps`: -1
|
254 |
-
- `lr_scheduler_type`: linear
|
255 |
-
- `lr_scheduler_kwargs`: {}
|
256 |
-
- `warmup_ratio`: 0.0
|
257 |
-
- `warmup_steps`: 0
|
258 |
-
- `log_level`: passive
|
259 |
-
- `log_level_replica`: warning
|
260 |
-
- `log_on_each_node`: True
|
261 |
-
- `logging_nan_inf_filter`: True
|
262 |
-
- `save_safetensors`: True
|
263 |
-
- `save_on_each_node`: False
|
264 |
-
- `save_only_model`: False
|
265 |
-
- `restore_callback_states_from_checkpoint`: False
|
266 |
-
- `no_cuda`: False
|
267 |
-
- `use_cpu`: False
|
268 |
-
- `use_mps_device`: False
|
269 |
-
- `seed`: 42
|
270 |
-
- `data_seed`: None
|
271 |
-
- `jit_mode_eval`: False
|
272 |
-
- `use_ipex`: False
|
273 |
-
- `bf16`: False
|
274 |
-
- `fp16`: False
|
275 |
-
- `fp16_opt_level`: O1
|
276 |
-
- `half_precision_backend`: auto
|
277 |
-
- `bf16_full_eval`: False
|
278 |
-
- `fp16_full_eval`: False
|
279 |
-
- `tf32`: None
|
280 |
-
- `local_rank`: 0
|
281 |
-
- `ddp_backend`: None
|
282 |
-
- `tpu_num_cores`: None
|
283 |
-
- `tpu_metrics_debug`: False
|
284 |
-
- `debug`: []
|
285 |
-
- `dataloader_drop_last`: False
|
286 |
-
- `dataloader_num_workers`: 0
|
287 |
-
- `dataloader_prefetch_factor`: None
|
288 |
-
- `past_index`: -1
|
289 |
-
- `disable_tqdm`: False
|
290 |
-
- `remove_unused_columns`: True
|
291 |
-
- `label_names`: None
|
292 |
-
- `load_best_model_at_end`: False
|
293 |
-
- `ignore_data_skip`: False
|
294 |
-
- `fsdp`: []
|
295 |
-
- `fsdp_min_num_params`: 0
|
296 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
297 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
298 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
299 |
-
- `deepspeed`: None
|
300 |
-
- `label_smoothing_factor`: 0.0
|
301 |
-
- `optim`: adamw_torch
|
302 |
-
- `optim_args`: None
|
303 |
-
- `adafactor`: False
|
304 |
-
- `group_by_length`: False
|
305 |
-
- `length_column_name`: length
|
306 |
-
- `ddp_find_unused_parameters`: None
|
307 |
-
- `ddp_bucket_cap_mb`: None
|
308 |
-
- `ddp_broadcast_buffers`: False
|
309 |
-
- `dataloader_pin_memory`: True
|
310 |
-
- `dataloader_persistent_workers`: False
|
311 |
-
- `skip_memory_metrics`: True
|
312 |
-
- `use_legacy_prediction_loop`: False
|
313 |
-
- `push_to_hub`: False
|
314 |
-
- `resume_from_checkpoint`: None
|
315 |
-
- `hub_model_id`: None
|
316 |
-
- `hub_strategy`: every_save
|
317 |
-
- `hub_private_repo`: None
|
318 |
-
- `hub_always_push`: False
|
319 |
-
- `hub_revision`: None
|
320 |
-
- `gradient_checkpointing`: False
|
321 |
-
- `gradient_checkpointing_kwargs`: None
|
322 |
-
- `include_inputs_for_metrics`: False
|
323 |
-
- `include_for_metrics`: []
|
324 |
-
- `eval_do_concat_batches`: True
|
325 |
-
- `fp16_backend`: auto
|
326 |
-
- `push_to_hub_model_id`: None
|
327 |
-
- `push_to_hub_organization`: None
|
328 |
-
- `mp_parameters`:
|
329 |
-
- `auto_find_batch_size`: False
|
330 |
-
- `full_determinism`: False
|
331 |
-
- `torchdynamo`: None
|
332 |
-
- `ray_scope`: last
|
333 |
-
- `ddp_timeout`: 1800
|
334 |
-
- `torch_compile`: False
|
335 |
-
- `torch_compile_backend`: None
|
336 |
-
- `torch_compile_mode`: None
|
337 |
-
- `include_tokens_per_second`: False
|
338 |
-
- `include_num_input_tokens_seen`: False
|
339 |
-
- `neftune_noise_alpha`: None
|
340 |
-
- `optim_target_modules`: None
|
341 |
-
- `batch_eval_metrics`: False
|
342 |
-
- `eval_on_start`: False
|
343 |
-
- `use_liger_kernel`: False
|
344 |
-
- `liger_kernel_config`: None
|
345 |
-
- `eval_use_gather_object`: False
|
346 |
-
- `average_tokens_across_devices`: False
|
347 |
-
- `prompts`: None
|
348 |
-
- `batch_sampler`: no_duplicates
|
349 |
-
- `multi_dataset_batch_sampler`: round_robin
|
350 |
-
- `router_mapping`: {}
|
351 |
-
- `learning_rate_mapping`: {}
|
352 |
-
|
353 |
-
</details>
|
354 |
-
|
355 |
-
### Training Logs
|
356 |
-
| Epoch | Step | Training Loss | sts-dev_spearman_cosine |
|
357 |
-
|:------:|:----:|:-------------:|:-----------------------:|
|
358 |
-
| 0.3477 | 500 | 0.3801 | - |
|
359 |
-
| 0.6954 | 1000 | 0.282 | 0.8489 |
|
360 |
-
| 1.0 | 1438 | - | 0.8560 |
|
361 |
-
| 1.0431 | 1500 | 0.2629 | - |
|
362 |
-
| 1.3908 | 2000 | 0.109 | 0.8627 |
|
363 |
-
|
364 |
-
|
365 |
-
### Framework Versions
|
366 |
-
- Python: 3.11.13
|
367 |
-
- Sentence Transformers: 5.0.0
|
368 |
-
- Transformers: 4.54.1
|
369 |
-
- PyTorch: 2.7.1+cu126
|
370 |
-
- Accelerate: 1.9.0
|
371 |
-
- Datasets: 3.6.0
|
372 |
-
- Tokenizers: 0.21.4
|
373 |
-
|
374 |
-
## Citation
|
375 |
-
|
376 |
-
### BibTeX
|
377 |
-
|
378 |
-
#### Sentence Transformers
|
379 |
-
```bibtex
|
380 |
-
@inproceedings{reimers-2019-sentence-bert,
|
381 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
382 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
383 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
384 |
-
month = "11",
|
385 |
-
year = "2019",
|
386 |
-
publisher = "Association for Computational Linguistics",
|
387 |
-
url = "https://arxiv.org/abs/1908.10084",
|
388 |
-
}
|
389 |
-
```
|
390 |
-
|
391 |
-
#### MultipleNegativesRankingLoss
|
392 |
-
```bibtex
|
393 |
-
@misc{henderson2017efficient,
|
394 |
-
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
395 |
-
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
396 |
-
year={2017},
|
397 |
-
eprint={1705.00652},
|
398 |
-
archivePrefix={arXiv},
|
399 |
-
primaryClass={cs.CL}
|
400 |
-
}
|
401 |
-
```
|
402 |
-
|
403 |
-
<!--
|
404 |
-
## Glossary
|
405 |
-
|
406 |
-
*Clearly define terms in order to be accessible across audiences.*
|
407 |
-
-->
|
408 |
-
|
409 |
-
<!--
|
410 |
-
## Model Card Authors
|
411 |
-
|
412 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
413 |
-
-->
|
414 |
-
|
415 |
-
<!--
|
416 |
-
## Model Card Contact
|
417 |
-
|
418 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
419 |
-
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|