Upload folder using huggingface_hub
Browse files
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "FlowMatchEulerDiscreteScheduler",
|
3 |
+
"_diffusers_version": "0.33.1",
|
4 |
+
"dynamic_time_shift": true,
|
5 |
+
"num_train_timesteps": 1000
|
6 |
+
}
|
scheduler/scheduling_flow_match_euler_discrete.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
|
32 |
+
"""
|
33 |
+
Output class for the scheduler's `step` function output.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
37 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
38 |
+
denoising loop.
|
39 |
+
"""
|
40 |
+
|
41 |
+
prev_sample: torch.FloatTensor
|
42 |
+
|
43 |
+
|
44 |
+
class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
45 |
+
"""
|
46 |
+
Euler scheduler.
|
47 |
+
|
48 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
49 |
+
methods the library implements for all schedulers such as loading and saving.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
num_train_timesteps (`int`, defaults to 1000):
|
53 |
+
The number of diffusion steps to train the model.
|
54 |
+
timestep_spacing (`str`, defaults to `"linspace"`):
|
55 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
56 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
57 |
+
shift (`float`, defaults to 1.0):
|
58 |
+
The shift value for the timestep schedule.
|
59 |
+
"""
|
60 |
+
|
61 |
+
_compatibles = []
|
62 |
+
order = 1
|
63 |
+
|
64 |
+
@register_to_config
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
num_train_timesteps: int = 1000,
|
68 |
+
dynamic_time_shift: bool = False
|
69 |
+
):
|
70 |
+
timesteps = torch.linspace(0, 1, num_train_timesteps + 1, dtype=torch.float32)[:-1]
|
71 |
+
|
72 |
+
self.timesteps = timesteps
|
73 |
+
|
74 |
+
self._step_index = None
|
75 |
+
self._begin_index = None
|
76 |
+
|
77 |
+
@property
|
78 |
+
def step_index(self):
|
79 |
+
"""
|
80 |
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
81 |
+
"""
|
82 |
+
return self._step_index
|
83 |
+
|
84 |
+
@property
|
85 |
+
def begin_index(self):
|
86 |
+
"""
|
87 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
88 |
+
"""
|
89 |
+
return self._begin_index
|
90 |
+
|
91 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
92 |
+
def set_begin_index(self, begin_index: int = 0):
|
93 |
+
"""
|
94 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
begin_index (`int`):
|
98 |
+
The begin index for the scheduler.
|
99 |
+
"""
|
100 |
+
self._begin_index = begin_index
|
101 |
+
|
102 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
103 |
+
if schedule_timesteps is None:
|
104 |
+
schedule_timesteps = self._timesteps
|
105 |
+
|
106 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
107 |
+
|
108 |
+
# The sigma index that is taken for the **very** first `step`
|
109 |
+
# is always the second index (or the last index if there is only 1)
|
110 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
111 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
112 |
+
pos = 1 if len(indices) > 1 else 0
|
113 |
+
|
114 |
+
return indices[pos].item()
|
115 |
+
|
116 |
+
# def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
117 |
+
# return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
118 |
+
|
119 |
+
def set_timesteps(
|
120 |
+
self,
|
121 |
+
num_inference_steps: int = None,
|
122 |
+
device: Union[str, torch.device] = None,
|
123 |
+
timesteps: Optional[List[float]] = None,
|
124 |
+
num_tokens: Optional[int] = None
|
125 |
+
):
|
126 |
+
"""
|
127 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
128 |
+
|
129 |
+
Args:
|
130 |
+
num_inference_steps (`int`):
|
131 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
132 |
+
device (`str` or `torch.device`, *optional*):
|
133 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
134 |
+
"""
|
135 |
+
|
136 |
+
if timesteps is None:
|
137 |
+
self.num_inference_steps = num_inference_steps
|
138 |
+
timesteps = np.linspace(0, 1, num_inference_steps + 1, dtype=np.float32)[:-1]
|
139 |
+
if self.config.dynamic_time_shift and num_tokens is not None:
|
140 |
+
m = np.sqrt(num_tokens) / 40 # when input resolution is 320 * 320, m = 1, when input resolution is 1024 * 1024, m = 3.2
|
141 |
+
timesteps = timesteps / (m - m * timesteps + timesteps)
|
142 |
+
|
143 |
+
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device)
|
144 |
+
_timesteps = torch.cat([timesteps, torch.ones(1, device=timesteps.device)])
|
145 |
+
|
146 |
+
self.timesteps = timesteps
|
147 |
+
self._timesteps = _timesteps
|
148 |
+
self._step_index = None
|
149 |
+
self._begin_index = None
|
150 |
+
|
151 |
+
def _init_step_index(self, timestep):
|
152 |
+
if self.begin_index is None:
|
153 |
+
if isinstance(timestep, torch.Tensor):
|
154 |
+
timestep = timestep.to(self.timesteps.device)
|
155 |
+
self._step_index = self.index_for_timestep(timestep)
|
156 |
+
else:
|
157 |
+
self._step_index = self._begin_index
|
158 |
+
|
159 |
+
def step(
|
160 |
+
self,
|
161 |
+
model_output: torch.FloatTensor,
|
162 |
+
timestep: Union[float, torch.FloatTensor],
|
163 |
+
sample: torch.FloatTensor,
|
164 |
+
generator: Optional[torch.Generator] = None,
|
165 |
+
return_dict: bool = True,
|
166 |
+
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
|
167 |
+
"""
|
168 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
169 |
+
process from the learned model outputs (most often the predicted noise).
|
170 |
+
|
171 |
+
Args:
|
172 |
+
model_output (`torch.FloatTensor`):
|
173 |
+
The direct output from learned diffusion model.
|
174 |
+
timestep (`float`):
|
175 |
+
The current discrete timestep in the diffusion chain.
|
176 |
+
sample (`torch.FloatTensor`):
|
177 |
+
A current instance of a sample created by the diffusion process.
|
178 |
+
s_churn (`float`):
|
179 |
+
s_tmin (`float`):
|
180 |
+
s_tmax (`float`):
|
181 |
+
s_noise (`float`, defaults to 1.0):
|
182 |
+
Scaling factor for noise added to the sample.
|
183 |
+
generator (`torch.Generator`, *optional*):
|
184 |
+
A random number generator.
|
185 |
+
return_dict (`bool`):
|
186 |
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
187 |
+
tuple.
|
188 |
+
|
189 |
+
Returns:
|
190 |
+
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
191 |
+
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
192 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
193 |
+
"""
|
194 |
+
|
195 |
+
if (
|
196 |
+
isinstance(timestep, int)
|
197 |
+
or isinstance(timestep, torch.IntTensor)
|
198 |
+
or isinstance(timestep, torch.LongTensor)
|
199 |
+
):
|
200 |
+
raise ValueError(
|
201 |
+
(
|
202 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
203 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
204 |
+
" one of the `scheduler.timesteps` as a timestep."
|
205 |
+
),
|
206 |
+
)
|
207 |
+
|
208 |
+
if self.step_index is None:
|
209 |
+
self._init_step_index(timestep)
|
210 |
+
# Upcast to avoid precision issues when computing prev_sample
|
211 |
+
sample = sample.to(torch.float32)
|
212 |
+
t = self._timesteps[self.step_index]
|
213 |
+
t_next = self._timesteps[self.step_index + 1]
|
214 |
+
|
215 |
+
prev_sample = sample + (t_next - t) * model_output
|
216 |
+
|
217 |
+
# Cast sample back to model compatible dtype
|
218 |
+
prev_sample = prev_sample.to(model_output.dtype)
|
219 |
+
|
220 |
+
# upon completion increase step index by one
|
221 |
+
self._step_index += 1
|
222 |
+
|
223 |
+
if not return_dict:
|
224 |
+
return (prev_sample,)
|
225 |
+
|
226 |
+
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
|
227 |
+
|
228 |
+
def __len__(self):
|
229 |
+
return self.config.num_train_timesteps
|