import os # Configurations for inference INFERENCE_WEIGHTS_PATH = '' # Path to weights for inference# Folder to save output files NUM_SAMPLES = 1000 # Number of samples to generate (only for generate mode) TOP_K = 9 # Top k for sampling TOP_P = 0.9 # Top p for sampling TEMPERATURE = 1.2 # Temperature for sampling ORIGINAL_OUTPUT_FOLDER = os.path.join('../output/original', os.path.splitext(os.path.split(INFERENCE_WEIGHTS_PATH)[-1])[0] + '_k_' + str(TOP_K) + '_p_' + str(TOP_P) + '_temp_' + str(TEMPERATURE)) INTERLEAVED_OUTPUT_FOLDER = os.path.join('../output/interleaved', os.path.splitext(os.path.split(INFERENCE_WEIGHTS_PATH)[-1])[0] + '_k_' + str(TOP_K) + '_p_' + str(TOP_P) + '_temp_' + str(TEMPERATURE)) # Configurations for model PATCH_STREAM = True # Stream training / inference PATCH_SIZE = 16 # Patch Size PATCH_LENGTH = 1024 # Patch Length CHAR_NUM_LAYERS = 6 # Number of layers in the decoder PATCH_NUM_LAYERS = 20 # Number of layers in the encoder HIDDEN_SIZE = 1280 # Hidden Size