--- license: mit language: - uz metrics: - precision - recall - f1 base_model: - FacebookAI/xlm-roberta-base library_name: transformers --- # xlm-roberta-base-lowercase This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.16673 - Precision: 0.5710 - Recall: 0.6137 - F1: 0.5916 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.1949 | 1.0 | 2206 | 0.1788 | 0.5315 | 0.5391 | 0.5353 | | 0.1669 | 2.0 | 4412 | 0.1670 | 0.5353 | 0.5995 | 0.5656 | | 0.1361 | 3.0 | 6618 | 0.1667 | 0.5710 | 0.6137 | 0.5916 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0