Update model.py
Browse files
model.py
CHANGED
@@ -4,259 +4,97 @@ from omnicloudmask import predict_from_array
|
|
4 |
import rasterio
|
5 |
from rasterio.io import MemoryFile
|
6 |
from rasterio.enums import Resampling
|
7 |
-
import tempfile
|
8 |
-
import os
|
9 |
-
from io import BytesIO
|
10 |
|
11 |
class TritonPythonModel:
|
12 |
def initialize(self, args):
|
13 |
"""
|
14 |
Initialize the model. This function is called once when the model is loaded.
|
15 |
"""
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
"""
|
20 |
-
Safely read JP2 bytes with multiple fallback methods
|
21 |
-
"""
|
22 |
-
try:
|
23 |
-
# Method 1: Try direct MemoryFile approach (works if GDAL drivers are properly configured)
|
24 |
-
with MemoryFile(jp2_bytes) as memfile:
|
25 |
-
with memfile.open() as src:
|
26 |
-
data = src.read(1).astype(np.float32)
|
27 |
-
height, width = src.height, src.width
|
28 |
-
profile = src.profile
|
29 |
-
return data, height, width, profile
|
30 |
-
|
31 |
-
except Exception as e1:
|
32 |
-
print(f"Method 1 (MemoryFile) failed: {e1}")
|
33 |
-
try:
|
34 |
-
# Method 2: Write to temporary file and read from disk
|
35 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.jp2') as tmp_file:
|
36 |
-
tmp_file.write(jp2_bytes)
|
37 |
-
tmp_file.flush()
|
38 |
-
|
39 |
-
with rasterio.open(tmp_file.name) as src:
|
40 |
-
data = src.read(1).astype(np.float32)
|
41 |
-
height, width = src.height, src.width
|
42 |
-
profile = src.profile
|
43 |
-
|
44 |
-
# Clean up temporary file
|
45 |
-
os.unlink(tmp_file.name)
|
46 |
-
return data, height, width, profile
|
47 |
-
|
48 |
-
except Exception as e2:
|
49 |
-
print(f"Method 2 (temporary file) failed: {e2}")
|
50 |
-
try:
|
51 |
-
# Method 3: Try with different suffix and basic profile
|
52 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.tiff') as tmp_file:
|
53 |
-
tmp_file.write(jp2_bytes)
|
54 |
-
tmp_file.flush()
|
55 |
-
|
56 |
-
with rasterio.open(tmp_file.name) as src:
|
57 |
-
data = src.read(1).astype(np.float32)
|
58 |
-
height, width = src.height, src.width
|
59 |
-
profile = {'driver': 'GTiff', 'height': height, 'width': width, 'count': 1, 'dtype': 'float32'}
|
60 |
-
|
61 |
-
os.unlink(tmp_file.name)
|
62 |
-
return data, height, width, profile
|
63 |
-
|
64 |
-
except Exception as e3:
|
65 |
-
print(f"Method 3 (tiff fallback) failed: {e3}")
|
66 |
-
# Method 4: Final fallback - try to interpret as raw numpy array
|
67 |
-
try:
|
68 |
-
# This assumes the data might be raw numpy bytes as fallback
|
69 |
-
data_array = np.frombuffer(jp2_bytes, dtype=np.float32)
|
70 |
-
|
71 |
-
# Try to guess square dimensions
|
72 |
-
side_length = int(np.sqrt(len(data_array)))
|
73 |
-
if side_length * side_length == len(data_array):
|
74 |
-
data = data_array.reshape(side_length, side_length)
|
75 |
-
height, width = side_length, side_length
|
76 |
-
profile = {'driver': 'GTiff', 'height': height, 'width': width, 'count': 1, 'dtype': 'float32'}
|
77 |
-
return data, height, width, profile
|
78 |
-
else:
|
79 |
-
# Try common satellite image dimensions
|
80 |
-
common_dims = [(10980, 10980), (5490, 5490), (1024, 1024), (512, 512)]
|
81 |
-
for h, w in common_dims:
|
82 |
-
if h * w == len(data_array):
|
83 |
-
data = data_array.reshape(h, w)
|
84 |
-
height, width = h, w
|
85 |
-
profile = {'driver': 'GTiff', 'height': height, 'width': width, 'count': 1, 'dtype': 'float32'}
|
86 |
-
return data, height, width, profile
|
87 |
-
|
88 |
-
raise ValueError(f"Cannot interpret data array of length {len(data_array)} as image")
|
89 |
-
|
90 |
-
except Exception as e4:
|
91 |
-
raise Exception(f"All fallback methods failed: MemoryFile({e1}), TempFile({e2}), TiffFallback({e3}), RawBytes({e4})")
|
92 |
-
|
93 |
-
def safe_resample_data(self, data, current_height, current_width, target_height, target_width, profile):
|
94 |
-
"""
|
95 |
-
Safely resample data to target dimensions with fallback methods
|
96 |
-
"""
|
97 |
-
if current_height == target_height and current_width == target_width:
|
98 |
-
return data
|
99 |
-
|
100 |
-
try:
|
101 |
-
# Method 1: Use rasterio resampling
|
102 |
-
temp_profile = profile.copy()
|
103 |
-
temp_profile.update({
|
104 |
-
'height': current_height,
|
105 |
-
'width': current_width,
|
106 |
-
'count': 1,
|
107 |
-
'dtype': 'float32'
|
108 |
-
})
|
109 |
-
|
110 |
-
with MemoryFile() as memfile:
|
111 |
-
with memfile.open(**temp_profile) as temp_dataset:
|
112 |
-
temp_dataset.write(data, 1)
|
113 |
-
|
114 |
-
resampled = temp_dataset.read(
|
115 |
-
out_shape=(1, target_height, target_width),
|
116 |
-
resampling=Resampling.bilinear
|
117 |
-
)[0].astype(np.float32)
|
118 |
-
|
119 |
-
return resampled
|
120 |
-
|
121 |
-
except Exception as e1:
|
122 |
-
print(f"Rasterio resampling failed: {e1}")
|
123 |
-
try:
|
124 |
-
# Method 2: Use scipy if available
|
125 |
-
from scipy import ndimage
|
126 |
-
zoom_factors = (target_height / current_height, target_width / current_width)
|
127 |
-
resampled = ndimage.zoom(data, zoom_factors, order=1)
|
128 |
-
return resampled.astype(np.float32)
|
129 |
-
|
130 |
-
except ImportError:
|
131 |
-
print("Scipy not available for resampling")
|
132 |
-
# Method 3: Simple nearest-neighbor resampling
|
133 |
-
h_indices = np.round(np.linspace(0, current_height - 1, target_height)).astype(int)
|
134 |
-
w_indices = np.round(np.linspace(0, current_width - 1, target_width)).astype(int)
|
135 |
-
|
136 |
-
resampled = data[np.ix_(h_indices, w_indices)]
|
137 |
-
return resampled.astype(np.float32)
|
138 |
-
|
139 |
-
except Exception as e2:
|
140 |
-
print(f"Scipy resampling failed: {e2}")
|
141 |
-
# Method 3: Simple nearest-neighbor resampling
|
142 |
-
h_indices = np.round(np.linspace(0, current_height - 1, target_height)).astype(int)
|
143 |
-
w_indices = np.round(np.linspace(0, current_width - 1, target_width)).astype(int)
|
144 |
-
|
145 |
-
resampled = data[np.ix_(h_indices, w_indices)]
|
146 |
-
return resampled.astype(np.float32)
|
147 |
|
148 |
def execute(self, requests):
|
149 |
"""
|
150 |
-
Process inference requests
|
151 |
"""
|
152 |
responses = []
|
153 |
-
|
154 |
for request in requests:
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
# The input might be hex strings, decode them to bytes first
|
167 |
-
red_hex = jp2_bytes_list[0]
|
168 |
-
green_hex = jp2_bytes_list[1]
|
169 |
-
nir_hex = jp2_bytes_list[2]
|
170 |
-
|
171 |
-
# Convert hex strings to bytes
|
172 |
-
try:
|
173 |
-
if isinstance(red_hex, str):
|
174 |
-
red_bytes = bytes.fromhex(red_hex)
|
175 |
-
green_bytes = bytes.fromhex(green_hex)
|
176 |
-
nir_bytes = bytes.fromhex(nir_hex)
|
177 |
-
print(f"Decoded hex strings to bytes")
|
178 |
-
elif isinstance(red_hex, (bytes, np.bytes_)):
|
179 |
-
# Already bytes, use directly
|
180 |
-
red_bytes = bytes(red_hex)
|
181 |
-
green_bytes = bytes(green_hex)
|
182 |
-
nir_bytes = bytes(nir_hex)
|
183 |
-
print(f"Input already in bytes format")
|
184 |
-
else:
|
185 |
-
# Might be numpy string object
|
186 |
-
red_bytes = bytes.fromhex(str(red_hex))
|
187 |
-
green_bytes = bytes.fromhex(str(green_hex))
|
188 |
-
nir_bytes = bytes.fromhex(str(nir_hex))
|
189 |
-
print(f"Converted numpy strings to bytes")
|
190 |
-
except Exception as e:
|
191 |
-
error_msg = f"Failed to decode input data: {str(e)}"
|
192 |
-
print(f"Decode error: {error_msg}")
|
193 |
-
error = pb_utils.TritonError(error_msg)
|
194 |
-
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
195 |
-
responses.append(response)
|
196 |
-
continue
|
197 |
-
|
198 |
-
print(f"Processing JP2 data - decoded sizes: Red={len(red_bytes)}, Green={len(green_bytes)}, NIR={len(nir_bytes)}")
|
199 |
-
|
200 |
-
# Read red band data (use as reference for dimensions)
|
201 |
-
red_data, target_height, target_width, red_profile = self.safe_read_jp2_bytes(red_bytes)
|
202 |
-
print(f"Red band: {red_data.shape}, target dimensions: {target_height}x{target_width}")
|
203 |
-
|
204 |
-
# Read and resample green band
|
205 |
-
green_data, green_height, green_width, green_profile = self.safe_read_jp2_bytes(green_bytes)
|
206 |
-
green_data = self.safe_resample_data(green_data, green_height, green_width, target_height, target_width, green_profile)
|
207 |
-
print(f"Green band after resampling: {green_data.shape}")
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
# Check for valid dimensions
|
224 |
-
if red_data.shape[0] == 0 or red_data.shape[1] == 0:
|
225 |
-
error_msg = f"Invalid band dimensions: {red_data.shape}"
|
226 |
-
error = pb_utils.TritonError(error_msg)
|
227 |
-
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
228 |
-
responses.append(response)
|
229 |
-
continue
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
#
|
236 |
-
|
237 |
-
|
238 |
|
239 |
-
#
|
240 |
-
|
241 |
-
cloud_mask = cloud_mask.flatten()
|
242 |
|
243 |
-
# Create output tensor
|
244 |
-
output_tensor = pb_utils.Tensor(
|
245 |
-
|
246 |
-
|
|
|
|
|
247 |
|
248 |
except Exception as e:
|
249 |
-
#
|
250 |
-
|
251 |
-
print(f"Model execution error: {error_msg}")
|
252 |
-
error = pb_utils.TritonError(error_msg)
|
253 |
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
254 |
-
responses.append(response)
|
255 |
|
|
|
|
|
|
|
256 |
return responses
|
257 |
|
258 |
def finalize(self):
|
259 |
"""
|
260 |
-
|
261 |
"""
|
262 |
-
print('Cloud Detection model
|
|
|
4 |
import rasterio
|
5 |
from rasterio.io import MemoryFile
|
6 |
from rasterio.enums import Resampling
|
|
|
|
|
|
|
7 |
|
8 |
class TritonPythonModel:
|
9 |
def initialize(self, args):
|
10 |
"""
|
11 |
Initialize the model. This function is called once when the model is loaded.
|
12 |
"""
|
13 |
+
# You can load models or initialize resources here if needed.
|
14 |
+
# Ensure rasterio is installed in the Python backend environment.
|
15 |
+
print('Initialized Cloud Detection model with JP2 input')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def execute(self, requests):
|
18 |
"""
|
19 |
+
Process inference requests.
|
20 |
"""
|
21 |
responses = []
|
22 |
+
# Every request must contain three JP2 byte strings (Red, Green, NIR).
|
23 |
for request in requests:
|
24 |
+
# Get the input tensor containing the byte arrays
|
25 |
+
input_tensor = pb_utils.get_input_tensor_by_name(request, "input_jp2_bytes")
|
26 |
+
# as_numpy() for TYPE_STRING gives an ndarray of Python bytes objects
|
27 |
+
jp2_bytes_list = input_tensor.as_numpy()
|
28 |
+
|
29 |
+
if len(jp2_bytes_list) != 3:
|
30 |
+
# Send an error response if the input shape is incorrect
|
31 |
+
error = pb_utils.TritonError(f"Expected 3 JP2 byte strings, received {len(jp2_bytes_list)}")
|
32 |
+
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
33 |
+
responses.append(response)
|
34 |
+
continue # Skip to the next request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Assume order: Red, Green, NIR based on client logic
|
37 |
+
red_bytes = jp2_bytes_list[0]
|
38 |
+
green_bytes = jp2_bytes_list[1]
|
39 |
+
nir_bytes = jp2_bytes_list[2]
|
40 |
|
41 |
+
try:
|
42 |
+
# Process JP2 bytes using rasterio in memory
|
43 |
+
with MemoryFile(red_bytes) as memfile_red:
|
44 |
+
with memfile_red.open() as src_red:
|
45 |
+
red_data = src_red.read(1).astype(np.float32)
|
46 |
+
target_height = src_red.height
|
47 |
+
target_width = src_red.width
|
48 |
+
|
49 |
+
with MemoryFile(green_bytes) as memfile_green:
|
50 |
+
with memfile_green.open() as src_green:
|
51 |
+
# Ensure green band matches red band dimensions (should if B03)
|
52 |
+
if src_green.height != target_height or src_green.width != target_width:
|
53 |
+
# Optional: Resample green if necessary, though B03 usually matches B04
|
54 |
+
green_data = src_green.read(
|
55 |
+
1,
|
56 |
+
out_shape=(1, target_height, target_width),
|
57 |
+
resampling=Resampling.bilinear
|
58 |
+
).astype(np.float32)
|
59 |
+
else:
|
60 |
+
green_data = src_green.read(1).astype(np.float32)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
with MemoryFile(nir_bytes) as memfile_nir:
|
64 |
+
with memfile_nir.open() as src_nir:
|
65 |
+
# Resample NIR (B8A) to match Red/Green (B04/B03) resolution
|
66 |
+
nir_data = src_nir.read(
|
67 |
+
1, # Read the first band
|
68 |
+
out_shape=(1, target_height, target_width),
|
69 |
+
resampling=Resampling.bilinear
|
70 |
+
).astype(np.float32)
|
71 |
|
72 |
+
# Stack bands in CHW format (Red, Green, NIR) for the model
|
73 |
+
# Match the channel order expected by predict_from_array
|
74 |
+
input_array = np.stack([red_data, green_data, nir_data], axis=0)
|
75 |
|
76 |
+
# Perform inference using the original function
|
77 |
+
pred_mask = predict_from_array(input_array)
|
|
|
78 |
|
79 |
+
# Create output tensor
|
80 |
+
output_tensor = pb_utils.Tensor(
|
81 |
+
"output_mask",
|
82 |
+
pred_mask.astype(np.uint8)
|
83 |
+
)
|
84 |
+
response = pb_utils.InferenceResponse([output_tensor])
|
85 |
|
86 |
except Exception as e:
|
87 |
+
# Handle errors during processing (e.g., invalid JP2 data)
|
88 |
+
error = pb_utils.TritonError(f"Error processing JP2 data: {str(e)}")
|
|
|
|
|
89 |
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
|
|
90 |
|
91 |
+
responses.append(response)
|
92 |
+
|
93 |
+
# Return a list of responses
|
94 |
return responses
|
95 |
|
96 |
def finalize(self):
|
97 |
"""
|
98 |
+
Called when the model is unloaded. Perform any necessary cleanup.
|
99 |
"""
|
100 |
+
print('Finalizing Cloud Detection model')
|