trongg commited on
Commit
9eec374
·
verified ·
1 Parent(s): fc0eb22

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-1.5B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-1.5B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 128,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "v_proj",
28
+ "down_proj",
29
+ "gate_proj",
30
+ "k_proj",
31
+ "o_proj",
32
+ "q_proj",
33
+ "up_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b62b12e199e6bedd9e95d2e5efb749393af4e9b810e7dfe8bb61dfb09f97ad2a
3
+ size 590925768
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c218ece263c9be96739df32024a702266188bdd9206a35d0100811b1e1c9ad2
3
+ size 1182075754
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1ef670213b59b255e679f05d3f763c9c5f8ef7309f12517fc29c7a71c74786b
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d21f02a9447e1e7d835d9e7c282495882c2b48a84287feb899c76374250092b9
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,1350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.9895148391682957,
6
+ "eval_steps": 200,
7
+ "global_step": 1400,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.014217167229429535,
14
+ "grad_norm": 0.07947567850351334,
15
+ "learning_rate": 4.4999999999999996e-05,
16
+ "loss": 1.3759,
17
+ "mean_token_accuracy": 0.6159000303596258,
18
+ "num_tokens": 84090.0,
19
+ "step": 10
20
+ },
21
+ {
22
+ "epoch": 0.02843433445885907,
23
+ "grad_norm": 0.08515394479036331,
24
+ "learning_rate": 9.5e-05,
25
+ "loss": 1.3323,
26
+ "mean_token_accuracy": 0.6351301483809948,
27
+ "num_tokens": 170759.0,
28
+ "step": 20
29
+ },
30
+ {
31
+ "epoch": 0.04265150168828861,
32
+ "grad_norm": 0.07723315060138702,
33
+ "learning_rate": 0.000145,
34
+ "loss": 1.1533,
35
+ "mean_token_accuracy": 0.6630864188075065,
36
+ "num_tokens": 253787.0,
37
+ "step": 30
38
+ },
39
+ {
40
+ "epoch": 0.05686866891771814,
41
+ "grad_norm": 0.06530017405748367,
42
+ "learning_rate": 0.00019500000000000002,
43
+ "loss": 1.1601,
44
+ "mean_token_accuracy": 0.6682917241007089,
45
+ "num_tokens": 336856.0,
46
+ "step": 40
47
+ },
48
+ {
49
+ "epoch": 0.07108583614714768,
50
+ "grad_norm": 0.07639652490615845,
51
+ "learning_rate": 0.000245,
52
+ "loss": 1.1466,
53
+ "mean_token_accuracy": 0.66524165160954,
54
+ "num_tokens": 424034.0,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.08530300337657722,
59
+ "grad_norm": 0.07605864852666855,
60
+ "learning_rate": 0.000295,
61
+ "loss": 1.0968,
62
+ "mean_token_accuracy": 0.6777923263609409,
63
+ "num_tokens": 506343.0,
64
+ "step": 60
65
+ },
66
+ {
67
+ "epoch": 0.09952017060600675,
68
+ "grad_norm": 0.07540106028318405,
69
+ "learning_rate": 0.000345,
70
+ "loss": 1.1026,
71
+ "mean_token_accuracy": 0.6769415199756622,
72
+ "num_tokens": 597209.0,
73
+ "step": 70
74
+ },
75
+ {
76
+ "epoch": 0.11373733783543628,
77
+ "grad_norm": 0.07050619274377823,
78
+ "learning_rate": 0.000395,
79
+ "loss": 1.1332,
80
+ "mean_token_accuracy": 0.6799008328467607,
81
+ "num_tokens": 681397.0,
82
+ "step": 80
83
+ },
84
+ {
85
+ "epoch": 0.12795450506486583,
86
+ "grad_norm": 0.0690559446811676,
87
+ "learning_rate": 0.00044500000000000003,
88
+ "loss": 1.0939,
89
+ "mean_token_accuracy": 0.6780450720340013,
90
+ "num_tokens": 770078.0,
91
+ "step": 90
92
+ },
93
+ {
94
+ "epoch": 0.14217167229429536,
95
+ "grad_norm": 0.07599011063575745,
96
+ "learning_rate": 0.000495,
97
+ "loss": 1.0984,
98
+ "mean_token_accuracy": 0.6856418281793595,
99
+ "num_tokens": 854875.0,
100
+ "step": 100
101
+ },
102
+ {
103
+ "epoch": 0.1563888395237249,
104
+ "grad_norm": 0.07766395807266235,
105
+ "learning_rate": 0.00049997524130583,
106
+ "loss": 1.0643,
107
+ "mean_token_accuracy": 0.6823979251086711,
108
+ "num_tokens": 941388.0,
109
+ "step": 110
110
+ },
111
+ {
112
+ "epoch": 0.17060600675315443,
113
+ "grad_norm": 0.07025604695081711,
114
+ "learning_rate": 0.000499889661992257,
115
+ "loss": 1.0308,
116
+ "mean_token_accuracy": 0.6956785634160042,
117
+ "num_tokens": 1034278.0,
118
+ "step": 120
119
+ },
120
+ {
121
+ "epoch": 0.18482317398258397,
122
+ "grad_norm": 0.07456669211387634,
123
+ "learning_rate": 0.0004997429773180627,
124
+ "loss": 1.1476,
125
+ "mean_token_accuracy": 0.6694141685962677,
126
+ "num_tokens": 1120392.0,
127
+ "step": 130
128
+ },
129
+ {
130
+ "epoch": 0.1990403412120135,
131
+ "grad_norm": 0.07715420424938202,
132
+ "learning_rate": 0.0004995352231519573,
133
+ "loss": 1.0151,
134
+ "mean_token_accuracy": 0.6931566946208477,
135
+ "num_tokens": 1206998.0,
136
+ "step": 140
137
+ },
138
+ {
139
+ "epoch": 0.21325750844144303,
140
+ "grad_norm": 0.07406821101903915,
141
+ "learning_rate": 0.0004992664502959351,
142
+ "loss": 1.0737,
143
+ "mean_token_accuracy": 0.676430806145072,
144
+ "num_tokens": 1293765.0,
145
+ "step": 150
146
+ },
147
+ {
148
+ "epoch": 0.22747467567087257,
149
+ "grad_norm": 0.06690461933612823,
150
+ "learning_rate": 0.0004989367244728525,
151
+ "loss": 1.0627,
152
+ "mean_token_accuracy": 0.6812205474823714,
153
+ "num_tokens": 1380899.0,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 0.24169184290030213,
158
+ "grad_norm": 0.07383380085229874,
159
+ "learning_rate": 0.0004985461263103559,
160
+ "loss": 1.0646,
161
+ "mean_token_accuracy": 0.687187984585762,
162
+ "num_tokens": 1465568.0,
163
+ "step": 170
164
+ },
165
+ {
166
+ "epoch": 0.25590901012973166,
167
+ "grad_norm": 0.06884950399398804,
168
+ "learning_rate": 0.0004980947513211662,
169
+ "loss": 1.0251,
170
+ "mean_token_accuracy": 0.694553443044424,
171
+ "num_tokens": 1550271.0,
172
+ "step": 180
173
+ },
174
+ {
175
+ "epoch": 0.27012617735916117,
176
+ "grad_norm": 0.06553196907043457,
177
+ "learning_rate": 0.0004975827098797236,
178
+ "loss": 1.0548,
179
+ "mean_token_accuracy": 0.6926396556198597,
180
+ "num_tokens": 1636861.0,
181
+ "step": 190
182
+ },
183
+ {
184
+ "epoch": 0.28434334458859073,
185
+ "grad_norm": 0.06570354849100113,
186
+ "learning_rate": 0.0004970101271951969,
187
+ "loss": 1.0264,
188
+ "step": 200
189
+ },
190
+ {
191
+ "epoch": 0.28434334458859073,
192
+ "eval_loss": 1.07483971118927,
193
+ "eval_mean_token_accuracy": 0.6932999727725982,
194
+ "eval_num_tokens": 1724122.0,
195
+ "eval_runtime": 42.5065,
196
+ "eval_samples_per_second": 23.502,
197
+ "eval_steps_per_second": 5.881,
198
+ "step": 200
199
+ },
200
+ {
201
+ "epoch": 0.29856051181802024,
202
+ "grad_norm": 0.06550676375627518,
203
+ "learning_rate": 0.000496377143280867,
204
+ "loss": 1.1593,
205
+ "mean_token_accuracy": 0.6800552912056446,
206
+ "num_tokens": 1812034.0,
207
+ "step": 210
208
+ },
209
+ {
210
+ "epoch": 0.3127776790474498,
211
+ "grad_norm": 0.06636584550142288,
212
+ "learning_rate": 0.0004956839129198892,
213
+ "loss": 1.0884,
214
+ "mean_token_accuracy": 0.6808783996850252,
215
+ "num_tokens": 1897847.0,
216
+ "step": 220
217
+ },
218
+ {
219
+ "epoch": 0.32699484627687936,
220
+ "grad_norm": 0.07459145039319992,
221
+ "learning_rate": 0.0004949306056274443,
222
+ "loss": 1.0021,
223
+ "mean_token_accuracy": 0.7001412186771632,
224
+ "num_tokens": 1985093.0,
225
+ "step": 230
226
+ },
227
+ {
228
+ "epoch": 0.34121201350630886,
229
+ "grad_norm": 0.07089713215827942,
230
+ "learning_rate": 0.0004941174056092868,
231
+ "loss": 1.1351,
232
+ "mean_token_accuracy": 0.6768312893807888,
233
+ "num_tokens": 2068917.0,
234
+ "step": 240
235
+ },
236
+ {
237
+ "epoch": 0.3554291807357384,
238
+ "grad_norm": 0.07157368212938309,
239
+ "learning_rate": 0.0004932445117167016,
240
+ "loss": 1.0925,
241
+ "mean_token_accuracy": 0.6823811627924442,
242
+ "num_tokens": 2156664.0,
243
+ "step": 250
244
+ },
245
+ {
246
+ "epoch": 0.36964634796516793,
247
+ "grad_norm": 0.08121207356452942,
248
+ "learning_rate": 0.0004923121373978788,
249
+ "loss": 1.0691,
250
+ "mean_token_accuracy": 0.6801868129521609,
251
+ "num_tokens": 2238958.0,
252
+ "step": 260
253
+ },
254
+ {
255
+ "epoch": 0.3838635151945975,
256
+ "grad_norm": 0.07213877141475677,
257
+ "learning_rate": 0.0004913205106457196,
258
+ "loss": 1.0836,
259
+ "mean_token_accuracy": 0.6846270024776459,
260
+ "num_tokens": 2325983.0,
261
+ "step": 270
262
+ },
263
+ {
264
+ "epoch": 0.398080682424027,
265
+ "grad_norm": 0.06338542699813843,
266
+ "learning_rate": 0.000490269873942085,
267
+ "loss": 1.0642,
268
+ "mean_token_accuracy": 0.6862983625382185,
269
+ "num_tokens": 2413507.0,
270
+ "step": 280
271
+ },
272
+ {
273
+ "epoch": 0.41229784965345656,
274
+ "grad_norm": 0.07177390903234482,
275
+ "learning_rate": 0.0004891604841985019,
276
+ "loss": 1.0845,
277
+ "mean_token_accuracy": 0.6847749698907137,
278
+ "num_tokens": 2501002.0,
279
+ "step": 290
280
+ },
281
+ {
282
+ "epoch": 0.42651501688288607,
283
+ "grad_norm": 0.076690673828125,
284
+ "learning_rate": 0.00048799261269334124,
285
+ "loss": 1.0119,
286
+ "mean_token_accuracy": 0.6916860986500979,
287
+ "num_tokens": 2585987.0,
288
+ "step": 300
289
+ },
290
+ {
291
+ "epoch": 0.44073218411231563,
292
+ "grad_norm": 0.06709789484739304,
293
+ "learning_rate": 0.0004867665450054816,
294
+ "loss": 0.9942,
295
+ "mean_token_accuracy": 0.7062507443130016,
296
+ "num_tokens": 2674750.0,
297
+ "step": 310
298
+ },
299
+ {
300
+ "epoch": 0.45494935134174513,
301
+ "grad_norm": 0.06799201667308807,
302
+ "learning_rate": 0.0004854825809444773,
303
+ "loss": 1.0469,
304
+ "mean_token_accuracy": 0.6844053711742163,
305
+ "num_tokens": 2759329.0,
306
+ "step": 320
307
+ },
308
+ {
309
+ "epoch": 0.4691665185711747,
310
+ "grad_norm": 0.0704847127199173,
311
+ "learning_rate": 0.00048414103447724636,
312
+ "loss": 1.0386,
313
+ "mean_token_accuracy": 0.6981413580477238,
314
+ "num_tokens": 2843743.0,
315
+ "step": 330
316
+ },
317
+ {
318
+ "epoch": 0.48338368580060426,
319
+ "grad_norm": 0.06998146325349808,
320
+ "learning_rate": 0.0004827422336512958,
321
+ "loss": 1.0033,
322
+ "mean_token_accuracy": 0.7021258160471916,
323
+ "num_tokens": 2930981.0,
324
+ "step": 340
325
+ },
326
+ {
327
+ "epoch": 0.49760085303003376,
328
+ "grad_norm": 0.07551276683807373,
329
+ "learning_rate": 0.0004812865205145048,
330
+ "loss": 1.0475,
331
+ "mean_token_accuracy": 0.6880744352936745,
332
+ "num_tokens": 3017518.0,
333
+ "step": 350
334
+ },
335
+ {
336
+ "epoch": 0.5118180202594633,
337
+ "grad_norm": 0.07380267232656479,
338
+ "learning_rate": 0.00047977425103148377,
339
+ "loss": 0.9871,
340
+ "mean_token_accuracy": 0.7036375127732754,
341
+ "num_tokens": 3106242.0,
342
+ "step": 360
343
+ },
344
+ {
345
+ "epoch": 0.5260351874888929,
346
+ "grad_norm": 0.07055483758449554,
347
+ "learning_rate": 0.0004782057949965307,
348
+ "loss": 1.075,
349
+ "mean_token_accuracy": 0.6817354142665863,
350
+ "num_tokens": 3194043.0,
351
+ "step": 370
352
+ },
353
+ {
354
+ "epoch": 0.5402523547183223,
355
+ "grad_norm": 0.07755430787801743,
356
+ "learning_rate": 0.00047658153594320535,
357
+ "loss": 1.047,
358
+ "mean_token_accuracy": 0.6804160382598639,
359
+ "num_tokens": 3277336.0,
360
+ "step": 380
361
+ },
362
+ {
363
+ "epoch": 0.5544695219477519,
364
+ "grad_norm": 0.07740534842014313,
365
+ "learning_rate": 0.00047490187105054437,
366
+ "loss": 1.0101,
367
+ "mean_token_accuracy": 0.7028108246624469,
368
+ "num_tokens": 3364865.0,
369
+ "step": 390
370
+ },
371
+ {
372
+ "epoch": 0.5686866891771815,
373
+ "grad_norm": 0.07296065241098404,
374
+ "learning_rate": 0.00047316721104593906,
375
+ "loss": 1.0261,
376
+ "step": 400
377
+ },
378
+ {
379
+ "epoch": 0.5686866891771815,
380
+ "eval_loss": 1.0445445775985718,
381
+ "eval_mean_token_accuracy": 0.7004730106592179,
382
+ "eval_num_tokens": 3453057.0,
383
+ "eval_runtime": 42.4654,
384
+ "eval_samples_per_second": 23.525,
385
+ "eval_steps_per_second": 5.887,
386
+ "step": 400
387
+ },
388
+ {
389
+ "epoch": 0.582903856406611,
390
+ "grad_norm": 0.07180076837539673,
391
+ "learning_rate": 0.00047137798010470056,
392
+ "loss": 1.0054,
393
+ "mean_token_accuracy": 0.6979773432016373,
394
+ "num_tokens": 3543849.0,
395
+ "step": 410
396
+ },
397
+ {
398
+ "epoch": 0.5971210236360405,
399
+ "grad_norm": 0.07680170238018036,
400
+ "learning_rate": 0.0004695346157463367,
401
+ "loss": 1.0841,
402
+ "mean_token_accuracy": 0.6853552751243115,
403
+ "num_tokens": 3628251.0,
404
+ "step": 420
405
+ },
406
+ {
407
+ "epoch": 0.61133819086547,
408
+ "grad_norm": 0.07107053697109222,
409
+ "learning_rate": 0.00046763756872756523,
410
+ "loss": 0.9948,
411
+ "mean_token_accuracy": 0.6986799541860819,
412
+ "num_tokens": 3717234.0,
413
+ "step": 430
414
+ },
415
+ {
416
+ "epoch": 0.6255553580948996,
417
+ "grad_norm": 0.08255039900541306,
418
+ "learning_rate": 0.00046568730293209104,
419
+ "loss": 1.0413,
420
+ "mean_token_accuracy": 0.6862188082188367,
421
+ "num_tokens": 3801222.0,
422
+ "step": 440
423
+ },
424
+ {
425
+ "epoch": 0.6397725253243292,
426
+ "grad_norm": 0.07656990736722946,
427
+ "learning_rate": 0.00046368429525717273,
428
+ "loss": 1.052,
429
+ "mean_token_accuracy": 0.6892995785921812,
430
+ "num_tokens": 3886081.0,
431
+ "step": 450
432
+ },
433
+ {
434
+ "epoch": 0.6539896925537587,
435
+ "grad_norm": 0.07661142945289612,
436
+ "learning_rate": 0.00046162903549700705,
437
+ "loss": 1.012,
438
+ "mean_token_accuracy": 0.6943552978336811,
439
+ "num_tokens": 3972184.0,
440
+ "step": 460
441
+ },
442
+ {
443
+ "epoch": 0.6682068597831882,
444
+ "grad_norm": 0.07201256603002548,
445
+ "learning_rate": 0.00045952202622296013,
446
+ "loss": 1.0699,
447
+ "mean_token_accuracy": 0.6910859402269125,
448
+ "num_tokens": 4055872.0,
449
+ "step": 470
450
+ },
451
+ {
452
+ "epoch": 0.6824240270126177,
453
+ "grad_norm": 0.07143343985080719,
454
+ "learning_rate": 0.00045736378266067414,
455
+ "loss": 1.0064,
456
+ "mean_token_accuracy": 0.7026031356304884,
457
+ "num_tokens": 4144012.0,
458
+ "step": 480
459
+ },
460
+ {
461
+ "epoch": 0.6966411942420473,
462
+ "grad_norm": 0.07650640606880188,
463
+ "learning_rate": 0.0004551548325640789,
464
+ "loss": 1.0517,
465
+ "mean_token_accuracy": 0.6946574732661247,
466
+ "num_tokens": 4230019.0,
467
+ "step": 490
468
+ },
469
+ {
470
+ "epoch": 0.7108583614714769,
471
+ "grad_norm": 0.07642583549022675,
472
+ "learning_rate": 0.0004528957160863412,
473
+ "loss": 1.0346,
474
+ "mean_token_accuracy": 0.6941149879246951,
475
+ "num_tokens": 4311202.0,
476
+ "step": 500
477
+ },
478
+ {
479
+ "epoch": 0.7250755287009063,
480
+ "grad_norm": 0.07585732638835907,
481
+ "learning_rate": 0.00045058698564778106,
482
+ "loss": 1.0548,
483
+ "mean_token_accuracy": 0.6841745227575302,
484
+ "num_tokens": 4397292.0,
485
+ "step": 510
486
+ },
487
+ {
488
+ "epoch": 0.7392926959303359,
489
+ "grad_norm": 0.07219212502241135,
490
+ "learning_rate": 0.00044822920580078887,
491
+ "loss": 1.0194,
492
+ "mean_token_accuracy": 0.6980217099189758,
493
+ "num_tokens": 4484848.0,
494
+ "step": 520
495
+ },
496
+ {
497
+ "epoch": 0.7535098631597654,
498
+ "grad_norm": 0.07723289728164673,
499
+ "learning_rate": 0.0004458229530917759,
500
+ "loss": 0.9967,
501
+ "mean_token_accuracy": 0.6917125687003136,
502
+ "num_tokens": 4568171.0,
503
+ "step": 530
504
+ },
505
+ {
506
+ "epoch": 0.767727030389195,
507
+ "grad_norm": 0.07553447037935257,
508
+ "learning_rate": 0.00044336881592019163,
509
+ "loss": 1.0854,
510
+ "mean_token_accuracy": 0.6873999379575253,
511
+ "num_tokens": 4655953.0,
512
+ "step": 540
513
+ },
514
+ {
515
+ "epoch": 0.7819441976186244,
516
+ "grad_norm": 0.08117958158254623,
517
+ "learning_rate": 0.00044086739439464266,
518
+ "loss": 1.0472,
519
+ "mean_token_accuracy": 0.68543600179255,
520
+ "num_tokens": 4741659.0,
521
+ "step": 550
522
+ },
523
+ {
524
+ "epoch": 0.796161364848054,
525
+ "grad_norm": 0.0754791796207428,
526
+ "learning_rate": 0.00043831930018614873,
527
+ "loss": 1.0366,
528
+ "mean_token_accuracy": 0.6899502877146005,
529
+ "num_tokens": 4821791.0,
530
+ "step": 560
531
+ },
532
+ {
533
+ "epoch": 0.8103785320774836,
534
+ "grad_norm": 0.07144685089588165,
535
+ "learning_rate": 0.00043572515637857126,
536
+ "loss": 0.9703,
537
+ "mean_token_accuracy": 0.7105959545820951,
538
+ "num_tokens": 4911804.0,
539
+ "step": 570
540
+ },
541
+ {
542
+ "epoch": 0.8245956993069131,
543
+ "grad_norm": 0.07971132546663284,
544
+ "learning_rate": 0.00043308559731625087,
545
+ "loss": 1.0127,
546
+ "mean_token_accuracy": 0.6948394205421209,
547
+ "num_tokens": 4997188.0,
548
+ "step": 580
549
+ },
550
+ {
551
+ "epoch": 0.8388128665363427,
552
+ "grad_norm": 0.07623772323131561,
553
+ "learning_rate": 0.0004304012684488917,
554
+ "loss": 0.9698,
555
+ "mean_token_accuracy": 0.7132892053574323,
556
+ "num_tokens": 5082069.0,
557
+ "step": 590
558
+ },
559
+ {
560
+ "epoch": 0.8530300337657721,
561
+ "grad_norm": 0.07272877544164658,
562
+ "learning_rate": 0.0004276728261737298,
563
+ "loss": 0.9706,
564
+ "step": 600
565
+ },
566
+ {
567
+ "epoch": 0.8530300337657721,
568
+ "eval_loss": 1.025159478187561,
569
+ "eval_mean_token_accuracy": 0.7048066265583038,
570
+ "eval_num_tokens": 5169872.0,
571
+ "eval_runtime": 42.4633,
572
+ "eval_samples_per_second": 23.526,
573
+ "eval_steps_per_second": 5.887,
574
+ "step": 600
575
+ },
576
+ {
577
+ "epoch": 0.8672472009952017,
578
+ "grad_norm": 0.07478692382574081,
579
+ "learning_rate": 0.0004249009376750249,
580
+ "loss": 1.046,
581
+ "mean_token_accuracy": 0.7029114665463567,
582
+ "num_tokens": 5257518.0,
583
+ "step": 610
584
+ },
585
+ {
586
+ "epoch": 0.8814643682246313,
587
+ "grad_norm": 0.07147077471017838,
588
+ "learning_rate": 0.0004220862807609143,
589
+ "loss": 0.9995,
590
+ "mean_token_accuracy": 0.6980900842696428,
591
+ "num_tokens": 5343931.0,
592
+ "step": 620
593
+ },
594
+ {
595
+ "epoch": 0.8956815354540608,
596
+ "grad_norm": 0.07459016889333725,
597
+ "learning_rate": 0.0004192295436976688,
598
+ "loss": 1.019,
599
+ "mean_token_accuracy": 0.7001338206231594,
600
+ "num_tokens": 5426802.0,
601
+ "step": 630
602
+ },
603
+ {
604
+ "epoch": 0.9098987026834903,
605
+ "grad_norm": 0.07691922038793564,
606
+ "learning_rate": 0.00041633142504139133,
607
+ "loss": 1.0229,
608
+ "mean_token_accuracy": 0.697338268905878,
609
+ "num_tokens": 5511524.0,
610
+ "step": 640
611
+ },
612
+ {
613
+ "epoch": 0.9241158699129198,
614
+ "grad_norm": 0.07407371699810028,
615
+ "learning_rate": 0.0004133926334671996,
616
+ "loss": 0.9848,
617
+ "mean_token_accuracy": 0.7054470591247082,
618
+ "num_tokens": 5600023.0,
619
+ "step": 650
620
+ },
621
+ {
622
+ "epoch": 0.9383330371423494,
623
+ "grad_norm": 0.07771491259336472,
624
+ "learning_rate": 0.000410413887595934,
625
+ "loss": 1.067,
626
+ "mean_token_accuracy": 0.6928857892751694,
627
+ "num_tokens": 5690236.0,
628
+ "step": 660
629
+ },
630
+ {
631
+ "epoch": 0.952550204371779,
632
+ "grad_norm": 0.07632343471050262,
633
+ "learning_rate": 0.00040739591581843407,
634
+ "loss": 1.037,
635
+ "mean_token_accuracy": 0.696436945348978,
636
+ "num_tokens": 5776575.0,
637
+ "step": 670
638
+ },
639
+ {
640
+ "epoch": 0.9667673716012085,
641
+ "grad_norm": 0.07429352402687073,
642
+ "learning_rate": 0.0004043394561174251,
643
+ "loss": 0.9819,
644
+ "mean_token_accuracy": 0.7112393327057361,
645
+ "num_tokens": 5867257.0,
646
+ "step": 680
647
+ },
648
+ {
649
+ "epoch": 0.980984538830638,
650
+ "grad_norm": 0.07374002784490585,
651
+ "learning_rate": 0.0004012452558870602,
652
+ "loss": 0.913,
653
+ "mean_token_accuracy": 0.7194178324192763,
654
+ "num_tokens": 5956262.0,
655
+ "step": 690
656
+ },
657
+ {
658
+ "epoch": 0.9952017060600675,
659
+ "grad_norm": 0.07516616582870483,
660
+ "learning_rate": 0.0003981140717501599,
661
+ "loss": 1.0199,
662
+ "mean_token_accuracy": 0.699269012734294,
663
+ "num_tokens": 6042335.0,
664
+ "step": 700
665
+ },
666
+ {
667
+ "epoch": 1.0085303003376578,
668
+ "grad_norm": 0.07739484310150146,
669
+ "learning_rate": 0.00039494666937319616,
670
+ "loss": 0.9484,
671
+ "mean_token_accuracy": 0.7045566352208456,
672
+ "num_tokens": 6119308.0,
673
+ "step": 710
674
+ },
675
+ {
676
+ "epoch": 1.0227474675670873,
677
+ "grad_norm": 0.08529424667358398,
678
+ "learning_rate": 0.0003917438232790641,
679
+ "loss": 0.9295,
680
+ "mean_token_accuracy": 0.7197049882262945,
681
+ "num_tokens": 6203866.0,
682
+ "step": 720
683
+ },
684
+ {
685
+ "epoch": 1.036964634796517,
686
+ "grad_norm": 0.08253555744886398,
687
+ "learning_rate": 0.0003885063166576886,
688
+ "loss": 0.8767,
689
+ "mean_token_accuracy": 0.7232992608100176,
690
+ "num_tokens": 6290259.0,
691
+ "step": 730
692
+ },
693
+ {
694
+ "epoch": 1.0511818020259462,
695
+ "grad_norm": 0.07590445876121521,
696
+ "learning_rate": 0.0003852349411745113,
697
+ "loss": 0.9535,
698
+ "mean_token_accuracy": 0.71869598031044,
699
+ "num_tokens": 6377505.0,
700
+ "step": 740
701
+ },
702
+ {
703
+ "epoch": 1.0653989692553758,
704
+ "grad_norm": 0.08107644319534302,
705
+ "learning_rate": 0.00038193049677690493,
706
+ "loss": 0.9614,
707
+ "mean_token_accuracy": 0.7086535628885031,
708
+ "num_tokens": 6463425.0,
709
+ "step": 750
710
+ },
711
+ {
712
+ "epoch": 1.0796161364848054,
713
+ "grad_norm": 0.07508436590433121,
714
+ "learning_rate": 0.00037859379149856334,
715
+ "loss": 0.9326,
716
+ "mean_token_accuracy": 0.720469256490469,
717
+ "num_tokens": 6552684.0,
718
+ "step": 760
719
+ },
720
+ {
721
+ "epoch": 1.093833303714235,
722
+ "grad_norm": 0.0790044292807579,
723
+ "learning_rate": 0.00037522564126191274,
724
+ "loss": 0.9778,
725
+ "mean_token_accuracy": 0.7115771636366844,
726
+ "num_tokens": 6636911.0,
727
+ "step": 770
728
+ },
729
+ {
730
+ "epoch": 1.1080504709436645,
731
+ "grad_norm": 0.08326832950115204,
732
+ "learning_rate": 0.000371826869678595,
733
+ "loss": 1.056,
734
+ "mean_token_accuracy": 0.6882848802953958,
735
+ "num_tokens": 6718835.0,
736
+ "step": 780
737
+ },
738
+ {
739
+ "epoch": 1.122267638173094,
740
+ "grad_norm": 0.08922722190618515,
741
+ "learning_rate": 0.0003683983078480708,
742
+ "loss": 0.9371,
743
+ "mean_token_accuracy": 0.7138718143105507,
744
+ "num_tokens": 6802682.0,
745
+ "step": 790
746
+ },
747
+ {
748
+ "epoch": 1.1364848054025236,
749
+ "grad_norm": 0.07749788463115692,
750
+ "learning_rate": 0.00036494079415439086,
751
+ "loss": 0.9389,
752
+ "step": 800
753
+ },
754
+ {
755
+ "epoch": 1.1364848054025236,
756
+ "eval_loss": 1.0164164304733276,
757
+ "eval_mean_token_accuracy": 0.7073304796218872,
758
+ "eval_num_tokens": 6890030.0,
759
+ "eval_runtime": 42.5558,
760
+ "eval_samples_per_second": 23.475,
761
+ "eval_steps_per_second": 5.875,
762
+ "step": 800
763
+ },
764
+ {
765
+ "epoch": 1.1507019726319532,
766
+ "grad_norm": 0.07486575841903687,
767
+ "learning_rate": 0.00036145517406118674,
768
+ "loss": 0.9133,
769
+ "mean_token_accuracy": 0.7182627562433481,
770
+ "num_tokens": 6977677.0,
771
+ "step": 810
772
+ },
773
+ {
774
+ "epoch": 1.1649191398613827,
775
+ "grad_norm": 0.08833441883325577,
776
+ "learning_rate": 0.00035794229990492987,
777
+ "loss": 0.9745,
778
+ "mean_token_accuracy": 0.7087426863610744,
779
+ "num_tokens": 7058573.0,
780
+ "step": 820
781
+ },
782
+ {
783
+ "epoch": 1.179136307090812,
784
+ "grad_norm": 0.08615554124116898,
785
+ "learning_rate": 0.0003544030306865108,
786
+ "loss": 0.8777,
787
+ "mean_token_accuracy": 0.7278520867228508,
788
+ "num_tokens": 7143361.0,
789
+ "step": 830
790
+ },
791
+ {
792
+ "epoch": 1.1933534743202416,
793
+ "grad_norm": 0.07825995981693268,
794
+ "learning_rate": 0.00035083823186118744,
795
+ "loss": 0.9291,
796
+ "mean_token_accuracy": 0.7207735061645508,
797
+ "num_tokens": 7232054.0,
798
+ "step": 840
799
+ },
800
+ {
801
+ "epoch": 1.2075706415496712,
802
+ "grad_norm": 0.08184744417667389,
803
+ "learning_rate": 0.00034724877512695674,
804
+ "loss": 0.8692,
805
+ "mean_token_accuracy": 0.7367342457175254,
806
+ "num_tokens": 7321898.0,
807
+ "step": 850
808
+ },
809
+ {
810
+ "epoch": 1.2217878087791008,
811
+ "grad_norm": 0.08207986503839493,
812
+ "learning_rate": 0.0003436355382113982,
813
+ "loss": 1.0342,
814
+ "mean_token_accuracy": 0.6977195214480162,
815
+ "num_tokens": 7407614.0,
816
+ "step": 860
817
+ },
818
+ {
819
+ "epoch": 1.2360049760085303,
820
+ "grad_norm": 0.08287196606397629,
821
+ "learning_rate": 0.00033999940465704394,
822
+ "loss": 0.8808,
823
+ "mean_token_accuracy": 0.727986204251647,
824
+ "num_tokens": 7495498.0,
825
+ "step": 870
826
+ },
827
+ {
828
+ "epoch": 1.2502221432379599,
829
+ "grad_norm": 0.08513687551021576,
830
+ "learning_rate": 0.0003363412636053269,
831
+ "loss": 0.9547,
832
+ "mean_token_accuracy": 0.7101028818637133,
833
+ "num_tokens": 7584760.0,
834
+ "step": 880
835
+ },
836
+ {
837
+ "epoch": 1.2644393104673894,
838
+ "grad_norm": 0.08163287490606308,
839
+ "learning_rate": 0.00033266200957915925,
840
+ "loss": 0.9349,
841
+ "mean_token_accuracy": 0.7183492567390204,
842
+ "num_tokens": 7672425.0,
843
+ "step": 890
844
+ },
845
+ {
846
+ "epoch": 1.2786564776968188,
847
+ "grad_norm": 0.08243776857852936,
848
+ "learning_rate": 0.00032896254226419543,
849
+ "loss": 0.9292,
850
+ "mean_token_accuracy": 0.7134430769830942,
851
+ "num_tokens": 7757203.0,
852
+ "step": 900
853
+ },
854
+ {
855
+ "epoch": 1.2928736449262486,
856
+ "grad_norm": 0.09458713978528976,
857
+ "learning_rate": 0.00032524376628883253,
858
+ "loss": 0.9744,
859
+ "mean_token_accuracy": 0.7050179023295641,
860
+ "num_tokens": 7846548.0,
861
+ "step": 910
862
+ },
863
+ {
864
+ "epoch": 1.307090812155678,
865
+ "grad_norm": 0.08505059778690338,
866
+ "learning_rate": 0.0003215065910030021,
867
+ "loss": 0.9786,
868
+ "mean_token_accuracy": 0.709782537817955,
869
+ "num_tokens": 7930393.0,
870
+ "step": 920
871
+ },
872
+ {
873
+ "epoch": 1.3213079793851075,
874
+ "grad_norm": 0.08586814999580383,
875
+ "learning_rate": 0.00031775193025580773,
876
+ "loss": 0.8947,
877
+ "mean_token_accuracy": 0.7237144611775875,
878
+ "num_tokens": 8016877.0,
879
+ "step": 930
880
+ },
881
+ {
882
+ "epoch": 1.335525146614537,
883
+ "grad_norm": 0.0874597579240799,
884
+ "learning_rate": 0.00031398070217206127,
885
+ "loss": 0.8978,
886
+ "mean_token_accuracy": 0.720280421897769,
887
+ "num_tokens": 8103878.0,
888
+ "step": 940
889
+ },
890
+ {
891
+ "epoch": 1.3497423138439666,
892
+ "grad_norm": 0.09211765974760056,
893
+ "learning_rate": 0.0003101938289277753,
894
+ "loss": 0.9288,
895
+ "mean_token_accuracy": 0.7201074693351984,
896
+ "num_tokens": 8190575.0,
897
+ "step": 950
898
+ },
899
+ {
900
+ "epoch": 1.3639594810733962,
901
+ "grad_norm": 0.0884537398815155,
902
+ "learning_rate": 0.00030639223652466336,
903
+ "loss": 0.9295,
904
+ "mean_token_accuracy": 0.713099530339241,
905
+ "num_tokens": 8275179.0,
906
+ "step": 960
907
+ },
908
+ {
909
+ "epoch": 1.3781766483028257,
910
+ "grad_norm": 0.08991611003875732,
911
+ "learning_rate": 0.0003025768545637057,
912
+ "loss": 0.9265,
913
+ "mean_token_accuracy": 0.7252651590853929,
914
+ "num_tokens": 8360478.0,
915
+ "step": 970
916
+ },
917
+ {
918
+ "epoch": 1.3923938155322553,
919
+ "grad_norm": 0.08758469671010971,
920
+ "learning_rate": 0.0002987486160178344,
921
+ "loss": 0.977,
922
+ "mean_token_accuracy": 0.7134061496704817,
923
+ "num_tokens": 8445197.0,
924
+ "step": 980
925
+ },
926
+ {
927
+ "epoch": 1.4066109827616846,
928
+ "grad_norm": 0.08159046620130539,
929
+ "learning_rate": 0.0002949084570037939,
930
+ "loss": 0.9115,
931
+ "mean_token_accuracy": 0.7211619779467583,
932
+ "num_tokens": 8530327.0,
933
+ "step": 990
934
+ },
935
+ {
936
+ "epoch": 1.4208281499911144,
937
+ "grad_norm": 0.08836396783590317,
938
+ "learning_rate": 0.00029105731655323344,
939
+ "loss": 0.9154,
940
+ "step": 1000
941
+ },
942
+ {
943
+ "epoch": 1.4208281499911144,
944
+ "eval_loss": 1.0047532320022583,
945
+ "eval_mean_token_accuracy": 0.7103532667160034,
946
+ "eval_num_tokens": 8619497.0,
947
+ "eval_runtime": 42.4552,
948
+ "eval_samples_per_second": 23.531,
949
+ "eval_steps_per_second": 5.889,
950
+ "step": 1000
951
+ },
952
+ {
953
+ "epoch": 1.4350453172205437,
954
+ "grad_norm": 0.09082586318254471,
955
+ "learning_rate": 0.0002871961363830858,
956
+ "loss": 0.9077,
957
+ "mean_token_accuracy": 0.7218164600431919,
958
+ "num_tokens": 8703507.0,
959
+ "step": 1010
960
+ },
961
+ {
962
+ "epoch": 1.4492624844499733,
963
+ "grad_norm": 0.09680253267288208,
964
+ "learning_rate": 0.0002833258606652901,
965
+ "loss": 0.8928,
966
+ "mean_token_accuracy": 0.7247406598180532,
967
+ "num_tokens": 8788781.0,
968
+ "step": 1020
969
+ },
970
+ {
971
+ "epoch": 1.4634796516794029,
972
+ "grad_norm": 0.08538492023944855,
973
+ "learning_rate": 0.0002794474357959138,
974
+ "loss": 0.9021,
975
+ "mean_token_accuracy": 0.7273614536970854,
976
+ "num_tokens": 8873572.0,
977
+ "step": 1030
978
+ },
979
+ {
980
+ "epoch": 1.4776968189088324,
981
+ "grad_norm": 0.08687795698642731,
982
+ "learning_rate": 0.00027556181016373147,
983
+ "loss": 0.9266,
984
+ "mean_token_accuracy": 0.7160039469599724,
985
+ "num_tokens": 8960541.0,
986
+ "step": 1040
987
+ },
988
+ {
989
+ "epoch": 1.491913986138262,
990
+ "grad_norm": 0.08219098299741745,
991
+ "learning_rate": 0.00027166993391831566,
992
+ "loss": 0.9344,
993
+ "mean_token_accuracy": 0.7199014227837324,
994
+ "num_tokens": 9046332.0,
995
+ "step": 1050
996
+ },
997
+ {
998
+ "epoch": 1.5061311533676913,
999
+ "grad_norm": 0.08430644124746323,
1000
+ "learning_rate": 0.000267772758737697,
1001
+ "loss": 0.963,
1002
+ "mean_token_accuracy": 0.7126489922404289,
1003
+ "num_tokens": 9133194.0,
1004
+ "step": 1060
1005
+ },
1006
+ {
1007
+ "epoch": 1.520348320597121,
1008
+ "grad_norm": 0.08255460858345032,
1009
+ "learning_rate": 0.00026387123759565197,
1010
+ "loss": 0.8784,
1011
+ "mean_token_accuracy": 0.7328134395182133,
1012
+ "num_tokens": 9220168.0,
1013
+ "step": 1070
1014
+ },
1015
+ {
1016
+ "epoch": 1.5345654878265504,
1017
+ "grad_norm": 0.09743297845125198,
1018
+ "learning_rate": 0.00025996632452867166,
1019
+ "loss": 0.8675,
1020
+ "mean_token_accuracy": 0.7273001208901405,
1021
+ "num_tokens": 9306051.0,
1022
+ "step": 1080
1023
+ },
1024
+ {
1025
+ "epoch": 1.5487826550559802,
1026
+ "grad_norm": 0.08803436160087585,
1027
+ "learning_rate": 0.0002560589744026729,
1028
+ "loss": 0.8476,
1029
+ "mean_token_accuracy": 0.7371940363198519,
1030
+ "num_tokens": 9398040.0,
1031
+ "step": 1090
1032
+ },
1033
+ {
1034
+ "epoch": 1.5629998222854096,
1035
+ "grad_norm": 0.08522514998912811,
1036
+ "learning_rate": 0.00025215014267950463,
1037
+ "loss": 0.9067,
1038
+ "mean_token_accuracy": 0.714500817283988,
1039
+ "num_tokens": 9485987.0,
1040
+ "step": 1100
1041
+ },
1042
+ {
1043
+ "epoch": 1.5772169895148391,
1044
+ "grad_norm": 0.09162591397762299,
1045
+ "learning_rate": 0.00024824078518331013,
1046
+ "loss": 0.936,
1047
+ "mean_token_accuracy": 0.7146482899785042,
1048
+ "num_tokens": 9571356.0,
1049
+ "step": 1110
1050
+ },
1051
+ {
1052
+ "epoch": 1.5914341567442687,
1053
+ "grad_norm": 0.0838090255856514,
1054
+ "learning_rate": 0.00024433185786679955,
1055
+ "loss": 0.9111,
1056
+ "mean_token_accuracy": 0.7223079178482295,
1057
+ "num_tokens": 9657761.0,
1058
+ "step": 1120
1059
+ },
1060
+ {
1061
+ "epoch": 1.6056513239736983,
1062
+ "grad_norm": 0.08568980544805527,
1063
+ "learning_rate": 0.00024042431657749118,
1064
+ "loss": 0.9572,
1065
+ "mean_token_accuracy": 0.710682961717248,
1066
+ "num_tokens": 9742840.0,
1067
+ "step": 1130
1068
+ },
1069
+ {
1070
+ "epoch": 1.6198684912031278,
1071
+ "grad_norm": 0.08540449291467667,
1072
+ "learning_rate": 0.00023651911682397937,
1073
+ "loss": 0.901,
1074
+ "mean_token_accuracy": 0.7298479046672582,
1075
+ "num_tokens": 9833491.0,
1076
+ "step": 1140
1077
+ },
1078
+ {
1079
+ "epoch": 1.6340856584325572,
1080
+ "grad_norm": 0.09621024876832962,
1081
+ "learning_rate": 0.0002326172135422839,
1082
+ "loss": 0.8465,
1083
+ "mean_token_accuracy": 0.739329730719328,
1084
+ "num_tokens": 9921422.0,
1085
+ "step": 1150
1086
+ },
1087
+ {
1088
+ "epoch": 1.648302825661987,
1089
+ "grad_norm": 0.0809611827135086,
1090
+ "learning_rate": 0.00022871956086234062,
1091
+ "loss": 0.8573,
1092
+ "mean_token_accuracy": 0.7349758796393872,
1093
+ "num_tokens": 10007862.0,
1094
+ "step": 1160
1095
+ },
1096
+ {
1097
+ "epoch": 1.6625199928914163,
1098
+ "grad_norm": 0.08698837459087372,
1099
+ "learning_rate": 0.00022482711187468823,
1100
+ "loss": 0.8512,
1101
+ "mean_token_accuracy": 0.7366860095411539,
1102
+ "num_tokens": 10100577.0,
1103
+ "step": 1170
1104
+ },
1105
+ {
1106
+ "epoch": 1.676737160120846,
1107
+ "grad_norm": 0.08779753744602203,
1108
+ "learning_rate": 0.00022094081839741004,
1109
+ "loss": 0.8936,
1110
+ "mean_token_accuracy": 0.7239959452301263,
1111
+ "num_tokens": 10186346.0,
1112
+ "step": 1180
1113
+ },
1114
+ {
1115
+ "epoch": 1.6909543273502754,
1116
+ "grad_norm": 0.08322805166244507,
1117
+ "learning_rate": 0.0002170616307433861,
1118
+ "loss": 0.9271,
1119
+ "mean_token_accuracy": 0.7187892116606236,
1120
+ "num_tokens": 10270881.0,
1121
+ "step": 1190
1122
+ },
1123
+ {
1124
+ "epoch": 1.705171494579705,
1125
+ "grad_norm": 0.09833941608667374,
1126
+ "learning_rate": 0.00021319049748791416,
1127
+ "loss": 1.0209,
1128
+ "step": 1200
1129
+ },
1130
+ {
1131
+ "epoch": 1.705171494579705,
1132
+ "eval_loss": 0.9964284300804138,
1133
+ "eval_mean_token_accuracy": 0.7130191161632538,
1134
+ "eval_num_tokens": 10355263.0,
1135
+ "eval_runtime": 42.5075,
1136
+ "eval_samples_per_second": 23.502,
1137
+ "eval_steps_per_second": 5.881,
1138
+ "step": 1200
1139
+ },
1140
+ {
1141
+ "epoch": 1.7193886618091345,
1142
+ "grad_norm": 0.09196127951145172,
1143
+ "learning_rate": 0.00020932836523675493,
1144
+ "loss": 0.9229,
1145
+ "mean_token_accuracy": 0.7052626656368375,
1146
+ "num_tokens": 10439472.0,
1147
+ "step": 1210
1148
+ },
1149
+ {
1150
+ "epoch": 1.733605829038564,
1151
+ "grad_norm": 0.09308561682701111,
1152
+ "learning_rate": 0.00020547617839465924,
1153
+ "loss": 0.9532,
1154
+ "mean_token_accuracy": 0.7139888234436512,
1155
+ "num_tokens": 10524216.0,
1156
+ "step": 1220
1157
+ },
1158
+ {
1159
+ "epoch": 1.7478229962679936,
1160
+ "grad_norm": 0.09138765186071396,
1161
+ "learning_rate": 0.0002016348789344335,
1162
+ "loss": 0.895,
1163
+ "mean_token_accuracy": 0.7220640182495117,
1164
+ "num_tokens": 10611738.0,
1165
+ "step": 1230
1166
+ },
1167
+ {
1168
+ "epoch": 1.762040163497423,
1169
+ "grad_norm": 0.08532418310642242,
1170
+ "learning_rate": 0.0001978054061665993,
1171
+ "loss": 0.9175,
1172
+ "mean_token_accuracy": 0.7228887047618627,
1173
+ "num_tokens": 10697449.0,
1174
+ "step": 1240
1175
+ },
1176
+ {
1177
+ "epoch": 1.7762573307268528,
1178
+ "grad_norm": 0.08684728294610977,
1179
+ "learning_rate": 0.0001939886965097048,
1180
+ "loss": 0.9053,
1181
+ "mean_token_accuracy": 0.7226716388016939,
1182
+ "num_tokens": 10783296.0,
1183
+ "step": 1250
1184
+ },
1185
+ {
1186
+ "epoch": 1.790474497956282,
1187
+ "grad_norm": 0.08659351617097855,
1188
+ "learning_rate": 0.0001901856832613426,
1189
+ "loss": 0.9259,
1190
+ "mean_token_accuracy": 0.7152926828712225,
1191
+ "num_tokens": 10871421.0,
1192
+ "step": 1260
1193
+ },
1194
+ {
1195
+ "epoch": 1.804691665185712,
1196
+ "grad_norm": 0.08151692152023315,
1197
+ "learning_rate": 0.00018639729636993137,
1198
+ "loss": 0.8651,
1199
+ "mean_token_accuracy": 0.7316095266491175,
1200
+ "num_tokens": 10960209.0,
1201
+ "step": 1270
1202
+ },
1203
+ {
1204
+ "epoch": 1.8189088324151412,
1205
+ "grad_norm": 0.09470875561237335,
1206
+ "learning_rate": 0.00018262446220731582,
1207
+ "loss": 0.9005,
1208
+ "mean_token_accuracy": 0.7300491981208325,
1209
+ "num_tokens": 11046451.0,
1210
+ "step": 1280
1211
+ },
1212
+ {
1213
+ "epoch": 1.8331259996445708,
1214
+ "grad_norm": 0.08670168370008469,
1215
+ "learning_rate": 0.0001788681033422419,
1216
+ "loss": 0.8818,
1217
+ "mean_token_accuracy": 0.7283473834395409,
1218
+ "num_tokens": 11132072.0,
1219
+ "step": 1290
1220
+ },
1221
+ {
1222
+ "epoch": 1.8473431668740004,
1223
+ "grad_norm": 0.08462122082710266,
1224
+ "learning_rate": 0.00017512913831476136,
1225
+ "loss": 0.9394,
1226
+ "mean_token_accuracy": 0.7198392864316702,
1227
+ "num_tokens": 11218335.0,
1228
+ "step": 1300
1229
+ },
1230
+ {
1231
+ "epoch": 1.86156033410343,
1232
+ "grad_norm": 0.0869954526424408,
1233
+ "learning_rate": 0.000171408481411622,
1234
+ "loss": 0.8649,
1235
+ "mean_token_accuracy": 0.7348789256066084,
1236
+ "num_tokens": 11305589.0,
1237
+ "step": 1310
1238
+ },
1239
+ {
1240
+ "epoch": 1.8757775013328595,
1241
+ "grad_norm": 0.09598379582166672,
1242
+ "learning_rate": 0.00016770704244269735,
1243
+ "loss": 0.8799,
1244
+ "mean_token_accuracy": 0.7312331754714251,
1245
+ "num_tokens": 11393534.0,
1246
+ "step": 1320
1247
+ },
1248
+ {
1249
+ "epoch": 1.8899946685622888,
1250
+ "grad_norm": 0.09157571196556091,
1251
+ "learning_rate": 0.00016402572651851217,
1252
+ "loss": 0.9071,
1253
+ "mean_token_accuracy": 0.7278904471546411,
1254
+ "num_tokens": 11481006.0,
1255
+ "step": 1330
1256
+ },
1257
+ {
1258
+ "epoch": 1.9042118357917186,
1259
+ "grad_norm": 0.08688797056674957,
1260
+ "learning_rate": 0.0001603654338289151,
1261
+ "loss": 0.921,
1262
+ "mean_token_accuracy": 0.725471879914403,
1263
+ "num_tokens": 11570046.0,
1264
+ "step": 1340
1265
+ },
1266
+ {
1267
+ "epoch": 1.918429003021148,
1268
+ "grad_norm": 0.09125315397977829,
1269
+ "learning_rate": 0.00015672705942295734,
1270
+ "loss": 0.8608,
1271
+ "mean_token_accuracy": 0.7313944108784198,
1272
+ "num_tokens": 11656322.0,
1273
+ "step": 1350
1274
+ },
1275
+ {
1276
+ "epoch": 1.9326461702505777,
1277
+ "grad_norm": 0.08270374685525894,
1278
+ "learning_rate": 0.00015311149299002542,
1279
+ "loss": 0.8296,
1280
+ "mean_token_accuracy": 0.740207726508379,
1281
+ "num_tokens": 11745127.0,
1282
+ "step": 1360
1283
+ },
1284
+ {
1285
+ "epoch": 1.946863337480007,
1286
+ "grad_norm": 0.09753109514713287,
1287
+ "learning_rate": 0.0001495196186422872,
1288
+ "loss": 0.9149,
1289
+ "mean_token_accuracy": 0.72291075065732,
1290
+ "num_tokens": 11826582.0,
1291
+ "step": 1370
1292
+ },
1293
+ {
1294
+ "epoch": 1.9610805047094366,
1295
+ "grad_norm": 0.09203537553548813,
1296
+ "learning_rate": 0.00014595231469849963,
1297
+ "loss": 0.9261,
1298
+ "mean_token_accuracy": 0.7244169395416975,
1299
+ "num_tokens": 11911842.0,
1300
+ "step": 1380
1301
+ },
1302
+ {
1303
+ "epoch": 1.9752976719388662,
1304
+ "grad_norm": 0.10030084103345871,
1305
+ "learning_rate": 0.00014241045346923462,
1306
+ "loss": 0.8738,
1307
+ "mean_token_accuracy": 0.7312715597450733,
1308
+ "num_tokens": 11997173.0,
1309
+ "step": 1390
1310
+ },
1311
+ {
1312
+ "epoch": 1.9895148391682957,
1313
+ "grad_norm": 0.09157243371009827,
1314
+ "learning_rate": 0.00013889490104357276,
1315
+ "loss": 0.944,
1316
+ "step": 1400
1317
+ },
1318
+ {
1319
+ "epoch": 1.9895148391682957,
1320
+ "eval_loss": 0.9828982949256897,
1321
+ "eval_mean_token_accuracy": 0.7159896125793457,
1322
+ "eval_num_tokens": 12079318.0,
1323
+ "eval_runtime": 42.4967,
1324
+ "eval_samples_per_second": 23.508,
1325
+ "eval_steps_per_second": 5.883,
1326
+ "step": 1400
1327
+ }
1328
+ ],
1329
+ "logging_steps": 10,
1330
+ "max_steps": 2109,
1331
+ "num_input_tokens_seen": 0,
1332
+ "num_train_epochs": 3,
1333
+ "save_steps": 200,
1334
+ "stateful_callbacks": {
1335
+ "TrainerControl": {
1336
+ "args": {
1337
+ "should_epoch_stop": false,
1338
+ "should_evaluate": false,
1339
+ "should_log": false,
1340
+ "should_save": true,
1341
+ "should_training_stop": false
1342
+ },
1343
+ "attributes": {}
1344
+ }
1345
+ },
1346
+ "total_flos": 1.2636469427598029e+17,
1347
+ "train_batch_size": 2,
1348
+ "trial_name": null,
1349
+ "trial_params": null
1350
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a5202b3ecdb2653f59eb37db7d5a5d9eb0d5e1cbfbe4599f418da1ac6927385
3
+ size 5752
vocab.json ADDED
The diff for this file is too large to render. See raw diff