trollek commited on
Commit
ac35bc1
·
verified ·
1 Parent(s): ac8b1a4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -3
README.md CHANGED
@@ -1,3 +1,80 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - trollek/ImagePromptHelper-v02
5
+ - Gustavosta/Stable-Diffusion-Prompts
6
+ - k-mktr/improved-flux-prompts
7
+ - Falah/image_generation_prompts_SDXL
8
+ - ChrisGoringe/flux_prompts
9
+ language:
10
+ - en
11
+ base_model:
12
+ - HuggingFaceTB/SmolLM2-135M
13
+ library_name: transformers
14
+ tags:
15
+ - llama-factory
16
+ - full
17
+ ---
18
+
19
+ # Smol Image Prompt Helper
20
+
21
+ This is meant to be a drop-in replacement for [my last image prompt helper](https://huggingface.co/trollek/ImagePromptHelper-danube3-500M) but with a new trick and a much smaller size.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 1.0077
24
+
25
+ ## Model description
26
+
27
+ Lets say you have a node in ComfyUI to parse JSON and send the appropriate prompt to the text encoders. Tadaaa:
28
+
29
+ ```
30
+ You are an AI assistant tasked with expanding and formatting image prompts. You are given an input that you will need to write image prompts for different text encoders.
31
+ Always respond with the following format:
32
+ {
33
+ "clip_l": "<keywords from image analysis>",
34
+ "clip_g": "<simple descriptions of the image>",
35
+ "t5xxl": "<complex semanticly rich description of the image>",
36
+ "negative": "<contrasting keywords for what is not in the image>"
37
+ }
38
+ ```
39
+
40
+ ## Intended uses & limitations
41
+
42
+ Have a look at the dataset that I created \([ImagePromptHelper-v02](https://huggingface.co/datasets/trollek/ImagePromptHelper-v02) \(CC BY 4.0\)\) and you will see whaaaaat I've doooone.
43
+
44
+ ## Training procedure
45
+
46
+ I continued the pretraining with SDXL and Flux prompts and then SFT'd it on my own dataset.
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 2e-05
52
+ - train_batch_size: 8
53
+ - eval_batch_size: 1
54
+ - seed: 443
55
+ - gradient_accumulation_steps: 8
56
+ - total_train_batch_size: 64
57
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
58
+ - lr_scheduler_type: cosine
59
+ - lr_scheduler_warmup_ratio: 0.05
60
+ - num_epochs: 3
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss |
65
+ |:-------------:|:------:|:----:|:---------------:|
66
+ | 1.1631 | 0.3966 | 500 | 1.2816 |
67
+ | 1.019 | 0.7932 | 1000 | 1.1431 |
68
+ | 0.9857 | 1.1896 | 1500 | 1.0818 |
69
+ | 1.0436 | 1.5862 | 2000 | 1.0459 |
70
+ | 0.9918 | 1.9827 | 2500 | 1.0235 |
71
+ | 0.9287 | 2.3791 | 3000 | 1.0114 |
72
+ | 0.9205 | 2.7757 | 3500 | 1.0079 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.50.0
78
+ - Pytorch 2.6.0+cu126
79
+ - Datasets 3.4.1
80
+ - Tokenizers 0.21.0