File size: 9,879 Bytes
46cbdbd bc1650c 46cbdbd 8035972 46cbdbd bc1650c 46cbdbd cc5172b 46cbdbd b2352e4 6c1747b 46cbdbd 2e645d9 46cbdbd a1f587d 46cbdbd 953e0cb 46cbdbd 29f1afb 46cbdbd 29f1afb 46cbdbd e6ca2fd 46cbdbd bc1650c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
language:
- en
- ko
- ja
- zh
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- finetuned
- chat
---
# Trillion-7B-preview
<p align="center">
<picture>
<img src="assets/Signiture_Black_White_BG_resized.jpg" alt="logo", width="300", style="margin: 40 auto;">
</picture>
## Introduction
We introduce Trillion-7B-preview, a preview of our latest large language model designed to push the boundaries of multilingual scalability and performance. This model is presented in the paper: [Trillion-7B-preview](https://huggingface.co/papers/2504.15431).
When comparing performance to training FLOPs for Trillion-7B-preview with competitive models, our model pushes the Pareto frontier, achieving around 66.5% average performance while using significantly fewer compute (~9.3×10²² FLOPs). It outperforms models like Mistral-7B-Instruct-v0.3 and SOLAR-10.7B-Instruct-v1.0 while remaining competitive with models requiring 3-8× more compute such as Qwen2.5-7B-Instruct and EXAONE-3.5-7.8B-Instruct. For full benchmark results, see tables below.
<p align="center">
<img src="assets/frontier.png" alt="Average Performance vs. Approximate Training FLOPs" width="700">
</p>
- Type: Causal Language Model
- Training Stage: Pre-training & Post-training
- Architecture: Transformer Decoder with RoPE, SwiGLU, RMSNorm
- Number of Parameters: 7.76B
- Number of Layers: 32
- Number of Attention Heads: 32
- Context Length: 4,096
- Number of Tokens seen: 2T
- Vocab Size: 128,128
## Quickstart
Here is a code snippet with `apply_chat_template` that demonstrates how to load the tokenizer and model and generate text.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "trillionlabs/Trillion-7B-preview"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Tell me a hilarious knock knock joke."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs["input_ids"],
attention_mask=model_inputs["attention_mask"],
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
"""
Sure! Here's a classic knock-knock joke that's guaranteed to make you chuckle:
Knock, knock.
Who's there?
Lettuce.
Lettuce who?
Lettuce in, it's too cold out here!
"""
```
We also support vLLM integration.
```bash
vllm serve trillionlabs/Trillion-7B-preview --max-model-len 4096
```
## Evaluation
We select a wide variety of benchmarks that evaluate general reasoning, knowledge recall, coding abilities, mathematical reasoning, and instruction following capabilities. We evaluated Trillion-7B-preview along with several leading large language models of similar size. Our model especially demonstrates strong performance on Korean benchmarks.
<details>
<summary> Full evaluation settings </summary>
| Benchmark | Language | Evaluation Setting | Metric |
|:----------|:---------|:------------------|:-------|
| **General Reasoning and Reading Comprehension** | | | |
| • HellaSwag | English | 0-shot | accuracy |
| • TruthfulQA_mc1 | English | 6-shot | accuracy |
| • TruthfulQA_mc2 | English | 6-shot | accuracy |
| • ARC:C | English | 0-shot | accuracy |
| • HAERAE | Korean | 3-shot | accuracy |
| • KoBEST | Korean | 5-shot | accuracy |
| • BBH | English | 0-shot, CoT | accuracy |
| • xwinograd_en | English | 0-shot | accuracy |
| • xwinograd_jp | Japanese | 0-shot | accuracy |
| • xwinograd_zh | Chinese | 0-shot | accuracy |
| **Knowledge Recall** | | | |
| • KMMLU | Korean | 5-shot | accuracy |
| • MMLU | English | 5-shot | accuracy |
| • Global-MMLU-Lite-en | English | 5-shot | accuracy |
| • Global-MMLU-Lite-ko | Korean | 5-shot | accuracy |
| • Global-MMLU-Lite-ja | Japanese | 5-shot | accuracy |
| • Global-MMLU-Lite-zh | Chinese | 5-shot | accuracy |
| **Coding** | | | |
| • HumanEval | English | 0-shot, CoT | pass@1 |
| • MBPP | English | 0-shot, CoT| pass@1 |
| **Mathematical Reasoning** | | | |
| • GSM8k | English | 0-shot, CoT | exact-match |
| • MATH | English | 0-shot, CoT | exact-match |
| • GPQA | English | 4-shot | accuracy |
| • HRM8k | Korean | 0-shot, CoT | exact-match |
| **Instruction Following and Chat** | | | |
| • IFEval | English | 0-shot | strict-average |
| • koIFEval* | Korean | 0-shot | strict-average |
| • MT-Bench** | English | LLM-as-a-judge (gpt-4o-2024-08-06) | LLM score |
| • KO-MT-Bench** | Korean | LLM-as-a-judge (gpt-4o-2024-08-06) | LLM score |
| • LogicKor** | Korean | LLM-as-a-judge (gpt-4o-2024-08-06) | LLM score |
- *Note that koIFEval is our in-house evaluation benchmark for assessing instruction-following capabilities in Korean.
- **Note that MT-Bench, KO-MT-Bench, and LogicKor use a 10-point scale.
</details>
### Benchmark Results
- Trillion-7B-preview
- [LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct)
- [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
- [meta-llama/Llama-3.1-8B-Instruct](meta-llama/Llama-3.1-8B-Instruct)
- [Qwen/Qwen2.5-7B-Instruct](Qwen/Qwen2.5-7B-Instruct)
- [upstage/SOLAR-10.7B-Instruct-v1.0](upstage/SOLAR-10.7B-Instruct-v1.0)
- [mistralai/Mistral-7B-Instruct-v0.3](mistralai/Mistral-7B-Instruct-v0.3)
### General Reasoning and Factuality
| Benchmark | Trillion-7B-preview | EXAONE-3.5-7.8B-Instruct | gemma-2-9b-it | Llama-3.1-8B-Instruct | Qwen2.5-7B-Instruct | SOLAR-10.7B-Instruct-v1.0 | Mistral-7B-Instruct-v0.3 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| HellaSwag | 58.94 | 60.04 | 59.72 | 59.81 | 61.97 | 68.72 | 65.79 |
| TruthfulQA_mc1 | 36.10 | 40.64 | 42.96 | 38.07 | 47.74 | 56.18 | 42.47 |
| TruthfulQA_mc2 | 54.10 | 59.74 | 60.09 | 54.54 | 64.72 | 70.64 | 59.41 |
| ARC:C | 54.44 | 56.40 | 62.97 | 53.58 | 52.99 | 60.07 | 58.11 |
| HAERAE | 80.02 | 76.08 | 68.01 | 63.15 | 65.17 | 60.86 | 47.75 |
| KoBEST | 79.61 | 78.57 | 79.98 | 70.09 | 79.24 | 75.20 | 66.50 |
| KMMLU | 48.09 | 45.39 | 46.66 | 41.41 | 50.15 | 41.66 | 33.59 |
| MMLU | 63.52 | 65.65 | 72.24 | 68.32 | 74.23 | 65.20 | 61.84 |
| Global-MMLU-Lite-en | 67.75 | 69.50 | 76.25 | 67.50 | 77.25 | 71.75 | 65.50 |
| Global-MMLU-Lite-ko | 60.75 | 60.00 | 64.25 | 54.00 | 59.25 | 53.75 | 43.00 |
| Global-MMLU-Lite-ja | 60.75 | 45.75 | 66.50 | 54.50 | 65.75 | 50.75 | 50.00 |
| Global-MMLU-Lite-zh | 59.50 | 50.00 | 63.75 | 60.25 | 68.75 | 57.00 | 47.25 |
| BBH | 41.94 | 53.30 | 28.77 | 43.16 | 53.68 | 52.91 | 45.09 |
| xwinograd_en | 87.78 | 87.10 | 89.55 | 88.09 | 85.63 | 87.35 | 88.39 |
| xwinograd_jp | 79.98 | 74.45 | 80.92 | 76.02 | 72.89 | 72.58 | 70.70 |
| xwinograd_zh | 73.81 | 69.44 | 68.06 | 76.19 | 81.55 | 74.60 | 71.83 |
### Coding
| Benchmark | Trillion-7B-preview | EXAONE-3.5-7.8B-Instruct | gemma-2-9b-it | Llama-3.1-8B-Instruct | Qwen2.5-7B-Instruct | SOLAR-10.7B-Instruct-v1.0 | Mistral-7B-Instruct-v0.3 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| HumanEval | 55.48 | 79.26 | 60.98 | 67.68 | 81.71 | 34.76 | 36.59 |
| MBPP | 40.40 | 61.40 | 8.40 | 39.20 | 51.00 | 29.40 | 36.00 |
### Mathematical Reasoning
| Benchmark | Trillion-7B-preview | EXAONE-3.5-7.8B-Instruct | gemma-2-9b-it | Llama-3.1-8B-Instruct | Qwen2.5-7B-Instruct | SOLAR-10.7B-Instruct-v1.0 | Mistral-7B-Instruct-v0.3 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| GSM8k | 72.25 | 87.79 | 73.69 | 74.98 | 88.86 | 62.93 | 35.94 |
| MATH | 32.70 | 70.68 | - | 38.30 | 71.50 | 14.38 | 12.12 |
| GPQA | 32.81 | 38.61 | 36.83 | 30.58 | 34.15 | 28.35 | 32.59 |
| HRM8k | 30.10 | 38.99 | 16.04 | - | 41.51 | 20.68 | 7.89 |
### Instruction Following and Chat
| Benchmark | Trillion-7B-preview | EXAONE-3.5-7.8B-Instruct | gemma-2-9b-it | Llama-3.1-8B-Instruct | Qwen2.5-7B-Instruct | SOLAR-10.7B-Instruct-v1.0 | Mistral-7B-Instruct-v0.3 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| IFEval | 79.13 | 81.42 | 75.48 | 74.93 | 75.85 | 51.61 | 52.64 |
| koIFEval | 66.58 | 54.65 | 43.30 | 36.07 | 48.55 | 26.12 | 34.22 |
| MT-Bench | 7.00 | 8.15 | 7.81 | 6.32 | 7.86 | 6.76 | 6.84 |
| KO-MT-Bench | 6.27 | 8.13 | 7.01 | 4.27 | 6.31 | 2.89 | 4.07 |
| LogicKor | 8.14 | 9.25 | 8.33 | 6.45 | 7.99 | 1.85 | 4.76
## Limitations
- Language Support: The model is optimized for English, Korean, Japanese, and Chinese. Usage with other languages may result in degraded performance.
- Knowledge Cutoff: The model's information is limited to data available up to August 2023.
- Safety Mechanisms: This release does not yet include comprehensive safety features. Future updates will address this area.
- Release Status: This is a preliminary release version with planned enhancements and updates forthcoming.
## License
This model repository is licensed under the Apache-2.0 License.
## Citation
```
@article{trillion7Bpreview,
title={Trillion-7B-preview},
author={trillionlabs},
year={2025},
url={https://huggingface.co/trillionlabs/Trillion-7B-preview}
}
```
```
@misc{han2025trillion7btechnicalreport,
title={Trillion 7B Technical Report},
author={Sungjun Han and Juyoung Suk and Suyeong An and Hyungguk Kim and Kyuseok Kim and Wonsuk Yang and Seungtaek Choi and Jamin Shin},
year={2025},
eprint={2504.15431},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.15431},
}
```
## Contact
For inquiries, please contact: [email protected] |