File size: 9,879 Bytes
46cbdbd
 
 
 
 
 
 
bc1650c
 
 
 
 
46cbdbd
 
 
 
 
 
8035972
46cbdbd
 
 
 
 
bc1650c
46cbdbd
 
cc5172b
46cbdbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2352e4
6c1747b
46cbdbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e645d9
 
 
 
 
46cbdbd
 
a1f587d
46cbdbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953e0cb
 
46cbdbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f1afb
 
46cbdbd
 
29f1afb
46cbdbd
 
 
e6ca2fd
 
 
 
 
 
 
 
 
 
 
46cbdbd
bc1650c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
language:
- en
- ko
- ja
- zh
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- finetuned
- chat
---

# Trillion-7B-preview

<p align="center">
<picture>
  <img src="assets/Signiture_Black_White_BG_resized.jpg" alt="logo", width="300", style="margin: 40 auto;">
</picture>


## Introduction

We introduce Trillion-7B-preview, a preview of our latest large language model designed to push the boundaries of multilingual scalability and performance.  This model is presented in the paper: [Trillion-7B-preview](https://huggingface.co/papers/2504.15431).


When comparing performance to training FLOPs for Trillion-7B-preview with competitive models, our model pushes the Pareto frontier, achieving around 66.5% average performance while using significantly fewer compute (~9.3×10²² FLOPs). It outperforms models like Mistral-7B-Instruct-v0.3 and SOLAR-10.7B-Instruct-v1.0 while remaining competitive with models requiring 3-8× more compute such as Qwen2.5-7B-Instruct and EXAONE-3.5-7.8B-Instruct. For full benchmark results, see tables below.

<p align="center">
<img src="assets/frontier.png" alt="Average Performance vs. Approximate Training FLOPs" width="700">
</p>

- Type: Causal Language Model
- Training Stage: Pre-training & Post-training
- Architecture: Transformer Decoder with RoPE, SwiGLU, RMSNorm
- Number of Parameters: 7.76B
- Number of Layers: 32
- Number of Attention Heads: 32
- Context Length: 4,096
- Number of Tokens seen: 2T
- Vocab Size: 128,128


## Quickstart

Here is a code snippet with `apply_chat_template` that demonstrates how to load the tokenizer and model and generate text.

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "trillionlabs/Trillion-7B-preview"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Tell me a hilarious knock knock joke."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    model_inputs["input_ids"],
    attention_mask=model_inputs["attention_mask"],
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

"""
Sure! Here's a classic knock-knock joke that's guaranteed to make you chuckle:
Knock, knock.
Who's there?
Lettuce.
Lettuce who?
Lettuce in, it's too cold out here!
"""
```

We also support vLLM integration.
```bash
vllm serve trillionlabs/Trillion-7B-preview --max-model-len 4096
```

## Evaluation

We select a wide variety of benchmarks that evaluate general reasoning, knowledge recall, coding abilities, mathematical reasoning, and instruction following capabilities. We evaluated Trillion-7B-preview along with several leading large language models of similar size. Our model especially demonstrates strong performance on Korean benchmarks.


<details>
<summary> Full evaluation settings </summary>

| Benchmark | Language | Evaluation Setting | Metric |
|:----------|:---------|:------------------|:-------|
| **General Reasoning and Reading Comprehension** | | | |
| • HellaSwag | English | 0-shot | accuracy |
| • TruthfulQA_mc1 | English | 6-shot | accuracy |
| • TruthfulQA_mc2 | English | 6-shot | accuracy |
| • ARC:C | English | 0-shot | accuracy |
| • HAERAE | Korean | 3-shot | accuracy |
| • KoBEST | Korean | 5-shot | accuracy |
| • BBH | English | 0-shot, CoT | accuracy |
| • xwinograd_en | English | 0-shot | accuracy |
| • xwinograd_jp | Japanese | 0-shot | accuracy |
| • xwinograd_zh | Chinese | 0-shot | accuracy |
| **Knowledge Recall** | | | |
| • KMMLU | Korean | 5-shot | accuracy |
| • MMLU | English | 5-shot | accuracy |
| • Global-MMLU-Lite-en | English | 5-shot | accuracy |
| • Global-MMLU-Lite-ko | Korean | 5-shot | accuracy |
| • Global-MMLU-Lite-ja | Japanese | 5-shot | accuracy |
| • Global-MMLU-Lite-zh | Chinese | 5-shot | accuracy |
| **Coding** | | | |
| • HumanEval | English | 0-shot, CoT | pass@1 |
| • MBPP | English | 0-shot, CoT| pass@1 |
| **Mathematical Reasoning** | | | |
| • GSM8k | English | 0-shot, CoT | exact-match |
| • MATH | English | 0-shot, CoT | exact-match |
| • GPQA | English | 4-shot | accuracy |
| • HRM8k | Korean | 0-shot, CoT | exact-match |
| **Instruction Following and Chat** | | | |
| • IFEval | English | 0-shot | strict-average |
| • koIFEval* | Korean | 0-shot | strict-average |
| • MT-Bench** | English | LLM-as-a-judge (gpt-4o-2024-08-06) | LLM score |
| • KO-MT-Bench** | Korean | LLM-as-a-judge (gpt-4o-2024-08-06) | LLM score |
| • LogicKor** | Korean | LLM-as-a-judge (gpt-4o-2024-08-06) | LLM score |

- *Note that koIFEval is our in-house evaluation benchmark for assessing instruction-following capabilities in Korean.
- **Note that MT-Bench, KO-MT-Bench, and LogicKor use a 10-point scale.

</details>

### Benchmark Results

- Trillion-7B-preview
- [LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct)
- [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
- [meta-llama/Llama-3.1-8B-Instruct](meta-llama/Llama-3.1-8B-Instruct)
- [Qwen/Qwen2.5-7B-Instruct](Qwen/Qwen2.5-7B-Instruct)
- [upstage/SOLAR-10.7B-Instruct-v1.0](upstage/SOLAR-10.7B-Instruct-v1.0)
- [mistralai/Mistral-7B-Instruct-v0.3](mistralai/Mistral-7B-Instruct-v0.3)


### General Reasoning and Factuality

| Benchmark | Trillion-7B-preview | EXAONE-3.5-7.8B-Instruct | gemma-2-9b-it | Llama-3.1-8B-Instruct | Qwen2.5-7B-Instruct | SOLAR-10.7B-Instruct-v1.0 | Mistral-7B-Instruct-v0.3 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| HellaSwag | 58.94 | 60.04 | 59.72 | 59.81 | 61.97 | 68.72 | 65.79 | 
| TruthfulQA_mc1 | 36.10 | 40.64 | 42.96 | 38.07 | 47.74 | 56.18 | 42.47 | 
| TruthfulQA_mc2 | 54.10 | 59.74 | 60.09 | 54.54 | 64.72 | 70.64 | 59.41 | 
| ARC:C | 54.44 | 56.40 | 62.97 | 53.58 | 52.99 | 60.07 | 58.11 | 
| HAERAE | 80.02 | 76.08 | 68.01 | 63.15 | 65.17 | 60.86 | 47.75 | 
| KoBEST | 79.61 | 78.57 | 79.98 | 70.09 | 79.24 | 75.20 | 66.50 | 
| KMMLU | 48.09 | 45.39 | 46.66 | 41.41 | 50.15 | 41.66 | 33.59 | 
| MMLU | 63.52 | 65.65 | 72.24 | 68.32 | 74.23 | 65.20 | 61.84 | 
| Global-MMLU-Lite-en | 67.75 | 69.50 | 76.25 | 67.50 | 77.25 | 71.75 | 65.50 | 
| Global-MMLU-Lite-ko | 60.75 | 60.00 | 64.25 | 54.00 | 59.25 | 53.75 | 43.00 | 
| Global-MMLU-Lite-ja | 60.75 | 45.75 | 66.50 | 54.50 | 65.75 | 50.75 | 50.00 | 
| Global-MMLU-Lite-zh | 59.50 | 50.00 | 63.75 | 60.25 | 68.75 | 57.00 | 47.25 | 
| BBH | 41.94 | 53.30 | 28.77 | 43.16 | 53.68 | 52.91 | 45.09 | 
| xwinograd_en | 87.78 | 87.10 | 89.55 | 88.09 | 85.63 | 87.35 | 88.39 | 
| xwinograd_jp | 79.98 | 74.45 | 80.92 | 76.02 | 72.89 | 72.58 | 70.70 | 
| xwinograd_zh | 73.81 | 69.44 | 68.06 | 76.19 | 81.55 | 74.60 | 71.83 | 

### Coding

| Benchmark | Trillion-7B-preview | EXAONE-3.5-7.8B-Instruct | gemma-2-9b-it | Llama-3.1-8B-Instruct | Qwen2.5-7B-Instruct | SOLAR-10.7B-Instruct-v1.0 | Mistral-7B-Instruct-v0.3 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| HumanEval | 55.48 | 79.26 | 60.98 | 67.68 | 81.71 | 34.76 | 36.59 | 
| MBPP | 40.40 | 61.40 | 8.40 | 39.20 | 51.00 | 29.40 | 36.00 | 

### Mathematical Reasoning

| Benchmark | Trillion-7B-preview | EXAONE-3.5-7.8B-Instruct | gemma-2-9b-it | Llama-3.1-8B-Instruct | Qwen2.5-7B-Instruct | SOLAR-10.7B-Instruct-v1.0 | Mistral-7B-Instruct-v0.3 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| GSM8k | 72.25 | 87.79 | 73.69 | 74.98 | 88.86 | 62.93 | 35.94 | 
| MATH | 32.70 | 70.68 | - | 38.30 | 71.50 | 14.38 | 12.12 | 
| GPQA | 32.81 | 38.61 | 36.83 | 30.58 | 34.15 | 28.35 | 32.59 | 
| HRM8k | 30.10 | 38.99 | 16.04 | - | 41.51 | 20.68 | 7.89 | 

### Instruction Following and Chat

| Benchmark | Trillion-7B-preview | EXAONE-3.5-7.8B-Instruct | gemma-2-9b-it | Llama-3.1-8B-Instruct | Qwen2.5-7B-Instruct | SOLAR-10.7B-Instruct-v1.0 | Mistral-7B-Instruct-v0.3 |
| --- | --- | --- | --- | --- | --- | --- | --- |
| IFEval | 79.13 | 81.42 | 75.48 | 74.93 | 75.85 | 51.61 | 52.64 | 
| koIFEval | 66.58 | 54.65 | 43.30 | 36.07 | 48.55 | 26.12 | 34.22 | 
| MT-Bench | 7.00 | 8.15 | 7.81 | 6.32 | 7.86 | 6.76 | 6.84 | 
| KO-MT-Bench | 6.27 | 8.13 | 7.01 | 4.27 | 6.31 | 2.89 | 4.07 | 
| LogicKor | 8.14 | 9.25 | 8.33 | 6.45 | 7.99 | 1.85 | 4.76




## Limitations

- Language Support: The model is optimized for English, Korean, Japanese, and Chinese. Usage with other languages may result in degraded performance.
- Knowledge Cutoff: The model's information is limited to data available up to August 2023.
- Safety Mechanisms: This release does not yet include comprehensive safety features. Future updates will address this area.
- Release Status: This is a preliminary release version with planned enhancements and updates forthcoming.


## License
This model repository is licensed under the Apache-2.0 License.


## Citation
```
@article{trillion7Bpreview,
  title={Trillion-7B-preview},
  author={trillionlabs},
  year={2025},
  url={https://huggingface.co/trillionlabs/Trillion-7B-preview}
}
```

```
@misc{han2025trillion7btechnicalreport,
      title={Trillion 7B Technical Report}, 
      author={Sungjun Han and Juyoung Suk and Suyeong An and Hyungguk Kim and Kyuseok Kim and Wonsuk Yang and Seungtaek Choi and Jamin Shin},
      year={2025},
      eprint={2504.15431},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2504.15431}, 
}
```
## Contact
For inquiries, please contact: [email protected]