--- library_name: transformers base_model: uitnlp/visobert tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: visobert-human-finetune-seed-69 results: [] --- # visobert-human-finetune-seed-69 This model is a fine-tuned version of [uitnlp/visobert](https://huggingface.co/uitnlp/visobert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3651 - Accuracy: 0.8720 - Precision: 0.6884 - Recall: 0.7116 - F1: 0.6966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 346 | 0.3459 | 0.8656 | 0.6824 | 0.6750 | 0.6476 | | 0.3399 | 2.0 | 692 | 0.3651 | 0.8720 | 0.6884 | 0.7116 | 0.6966 | | 0.1883 | 3.0 | 1038 | 0.3686 | 0.8787 | 0.7074 | 0.6771 | 0.6913 | | 0.1883 | 4.0 | 1384 | 0.5800 | 0.8720 | 0.7127 | 0.6519 | 0.6594 | | 0.0913 | 5.0 | 1730 | 0.5507 | 0.8746 | 0.7029 | 0.6860 | 0.6934 | | 0.0605 | 6.0 | 2076 | 0.6090 | 0.8757 | 0.7007 | 0.6792 | 0.6895 | | 0.0605 | 7.0 | 2422 | 0.6178 | 0.8821 | 0.7406 | 0.6434 | 0.6830 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0