--- library_name: transformers license: mit base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: phobert-human-tl-seg-seed-6969 results: [] --- # phobert-human-tl-seg-seed-6969 This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4483 - Accuracy: 0.8432 - Precision: 0.6507 - Recall: 0.4682 - F1: 0.4928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 346 | 0.5129 | 0.8245 | 0.5325 | 0.3537 | 0.3399 | | 0.5757 | 2.0 | 692 | 0.4692 | 0.8383 | 0.6238 | 0.4332 | 0.4500 | | 0.4598 | 3.0 | 1038 | 0.4671 | 0.8357 | 0.6235 | 0.4116 | 0.4280 | | 0.4598 | 4.0 | 1384 | 0.4641 | 0.8394 | 0.6756 | 0.4279 | 0.4498 | | 0.4567 | 5.0 | 1730 | 0.4582 | 0.8379 | 0.6325 | 0.4272 | 0.4478 | | 0.4499 | 6.0 | 2076 | 0.4588 | 0.8406 | 0.6718 | 0.4424 | 0.4617 | | 0.4499 | 7.0 | 2422 | 0.4633 | 0.8372 | 0.6655 | 0.4118 | 0.4320 | | 0.4517 | 8.0 | 2768 | 0.4522 | 0.8417 | 0.6340 | 0.4522 | 0.4741 | | 0.4477 | 9.0 | 3114 | 0.4539 | 0.8402 | 0.6644 | 0.4267 | 0.4503 | | 0.4477 | 10.0 | 3460 | 0.4560 | 0.8439 | 0.6645 | 0.4647 | 0.4813 | | 0.4508 | 11.0 | 3806 | 0.4534 | 0.8387 | 0.6499 | 0.4235 | 0.4488 | | 0.444 | 12.0 | 4152 | 0.4483 | 0.8432 | 0.6507 | 0.4682 | 0.4928 | | 0.444 | 13.0 | 4498 | 0.4501 | 0.8391 | 0.6491 | 0.4355 | 0.4633 | | 0.4506 | 14.0 | 4844 | 0.4532 | 0.8394 | 0.6442 | 0.4253 | 0.4490 | | 0.4422 | 15.0 | 5190 | 0.4528 | 0.8394 | 0.6497 | 0.4245 | 0.4494 | | 0.4498 | 16.0 | 5536 | 0.4663 | 0.8376 | 0.6743 | 0.4123 | 0.4332 | | 0.4498 | 17.0 | 5882 | 0.4476 | 0.8417 | 0.6345 | 0.4435 | 0.4672 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0