--- library_name: transformers license: mit base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: phobert-human-tl-seg-seed-24 results: [] --- # phobert-human-tl-seg-seed-24 This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4485 - Accuracy: 0.8432 - Precision: 0.6562 - Recall: 0.4696 - F1: 0.4951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 346 | 0.5115 | 0.8252 | 0.5391 | 0.3562 | 0.3443 | | 0.5974 | 2.0 | 692 | 0.4692 | 0.8387 | 0.6396 | 0.4344 | 0.4514 | | 0.4599 | 3.0 | 1038 | 0.4663 | 0.8361 | 0.6226 | 0.4128 | 0.4293 | | 0.4599 | 4.0 | 1384 | 0.4646 | 0.8379 | 0.6699 | 0.4218 | 0.4423 | | 0.4571 | 5.0 | 1730 | 0.4580 | 0.8383 | 0.6521 | 0.4285 | 0.4490 | | 0.4498 | 6.0 | 2076 | 0.4584 | 0.8402 | 0.6690 | 0.4422 | 0.4610 | | 0.4498 | 7.0 | 2422 | 0.4629 | 0.8372 | 0.6626 | 0.4118 | 0.4318 | | 0.4515 | 8.0 | 2768 | 0.4522 | 0.8409 | 0.6320 | 0.4529 | 0.4744 | | 0.4474 | 9.0 | 3114 | 0.4536 | 0.8387 | 0.6573 | 0.4217 | 0.4438 | | 0.4474 | 10.0 | 3460 | 0.4561 | 0.8439 | 0.6656 | 0.4647 | 0.4816 | | 0.4509 | 11.0 | 3806 | 0.4530 | 0.8379 | 0.6461 | 0.4221 | 0.4468 | | 0.4438 | 12.0 | 4152 | 0.4485 | 0.8432 | 0.6562 | 0.4696 | 0.4951 | | 0.4438 | 13.0 | 4498 | 0.4501 | 0.8387 | 0.6479 | 0.4342 | 0.4618 | | 0.4505 | 14.0 | 4844 | 0.4528 | 0.8387 | 0.6406 | 0.4239 | 0.4471 | | 0.4421 | 15.0 | 5190 | 0.4529 | 0.8391 | 0.6485 | 0.4233 | 0.4478 | | 0.45 | 16.0 | 5536 | 0.4665 | 0.8372 | 0.6692 | 0.4110 | 0.4320 | | 0.45 | 17.0 | 5882 | 0.4475 | 0.8417 | 0.6431 | 0.4438 | 0.4686 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0