--- library_name: transformers license: mit base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: phobert-human-tl-seed-6969 results: [] --- # phobert-human-tl-seed-6969 This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4535 - Accuracy: 0.8387 - Precision: 0.6438 - Recall: 0.4677 - F1: 0.4914 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 346 | 0.5154 | 0.8241 | 0.5456 | 0.3492 | 0.3314 | | 0.5778 | 2.0 | 692 | 0.4712 | 0.8305 | 0.6220 | 0.4062 | 0.4191 | | 0.4667 | 3.0 | 1038 | 0.4650 | 0.8331 | 0.6490 | 0.4069 | 0.4227 | | 0.4667 | 4.0 | 1384 | 0.4665 | 0.8365 | 0.6819 | 0.4147 | 0.4337 | | 0.4617 | 5.0 | 1730 | 0.4639 | 0.8357 | 0.6591 | 0.4129 | 0.4337 | | 0.4577 | 6.0 | 2076 | 0.4606 | 0.8368 | 0.6775 | 0.4282 | 0.4479 | | 0.4577 | 7.0 | 2422 | 0.4626 | 0.8361 | 0.6851 | 0.4134 | 0.4359 | | 0.4554 | 8.0 | 2768 | 0.4530 | 0.8394 | 0.6468 | 0.4436 | 0.4674 | | 0.4545 | 9.0 | 3114 | 0.4599 | 0.8342 | 0.6459 | 0.4083 | 0.4288 | | 0.4545 | 10.0 | 3460 | 0.4603 | 0.8350 | 0.6825 | 0.4375 | 0.4543 | | 0.4587 | 11.0 | 3806 | 0.4594 | 0.8346 | 0.6499 | 0.4092 | 0.4321 | | 0.4491 | 12.0 | 4152 | 0.4535 | 0.8387 | 0.6438 | 0.4677 | 0.4914 | | 0.4491 | 13.0 | 4498 | 0.4555 | 0.8353 | 0.6372 | 0.4213 | 0.4475 | | 0.4579 | 14.0 | 4844 | 0.4563 | 0.8357 | 0.6552 | 0.4129 | 0.4359 | | 0.4488 | 15.0 | 5190 | 0.4595 | 0.8335 | 0.6553 | 0.4019 | 0.4217 | | 0.4587 | 16.0 | 5536 | 0.4663 | 0.8327 | 0.6580 | 0.3987 | 0.4161 | | 0.4587 | 17.0 | 5882 | 0.4515 | 0.8387 | 0.6235 | 0.4357 | 0.4612 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0