--- library_name: transformers license: mit base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: phobert-human-tl-seed-42 results: [] --- # phobert-human-tl-seed-42 This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4535 - Accuracy: 0.8391 - Precision: 0.6540 - Recall: 0.4704 - F1: 0.4947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 346 | 0.5155 | 0.8230 | 0.5189 | 0.3466 | 0.3267 | | 0.5915 | 2.0 | 692 | 0.4712 | 0.8305 | 0.6068 | 0.4030 | 0.4152 | | 0.4672 | 3.0 | 1038 | 0.4644 | 0.8327 | 0.6736 | 0.4060 | 0.4224 | | 0.4672 | 4.0 | 1384 | 0.4667 | 0.8361 | 0.6805 | 0.4135 | 0.4321 | | 0.4614 | 5.0 | 1730 | 0.4633 | 0.8361 | 0.6715 | 0.4145 | 0.4368 | | 0.4576 | 6.0 | 2076 | 0.4599 | 0.8357 | 0.6605 | 0.4245 | 0.4437 | | 0.4576 | 7.0 | 2422 | 0.4622 | 0.8365 | 0.6768 | 0.4147 | 0.4375 | | 0.4553 | 8.0 | 2768 | 0.4527 | 0.8383 | 0.6430 | 0.4410 | 0.4643 | | 0.4542 | 9.0 | 3114 | 0.4601 | 0.8335 | 0.6428 | 0.4059 | 0.4254 | | 0.4542 | 10.0 | 3460 | 0.4600 | 0.8342 | 0.6642 | 0.4372 | 0.4537 | | 0.4588 | 11.0 | 3806 | 0.4585 | 0.8353 | 0.6504 | 0.4105 | 0.4342 | | 0.4487 | 12.0 | 4152 | 0.4535 | 0.8391 | 0.6540 | 0.4704 | 0.4947 | | 0.4487 | 13.0 | 4498 | 0.4552 | 0.8361 | 0.6410 | 0.4205 | 0.4471 | | 0.4577 | 14.0 | 4844 | 0.4558 | 0.8353 | 0.6467 | 0.4113 | 0.4336 | | 0.4487 | 15.0 | 5190 | 0.4589 | 0.8335 | 0.6571 | 0.4019 | 0.4216 | | 0.4586 | 16.0 | 5536 | 0.4665 | 0.8327 | 0.6580 | 0.3987 | 0.4161 | | 0.4586 | 17.0 | 5882 | 0.4513 | 0.8379 | 0.6188 | 0.4343 | 0.4590 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0