--- library_name: transformers license: mit base_model: vinai/phobert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: phobert-human-tl-seed-24 results: [] --- # phobert-human-tl-seed-24 This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4536 - Accuracy: 0.8391 - Precision: 0.6540 - Recall: 0.4704 - F1: 0.4947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 346 | 0.5144 | 0.8237 | 0.5296 | 0.3491 | 0.3313 | | 0.5988 | 2.0 | 692 | 0.4708 | 0.8305 | 0.6087 | 0.4030 | 0.4154 | | 0.4669 | 3.0 | 1038 | 0.4640 | 0.8316 | 0.6565 | 0.4041 | 0.4188 | | 0.4669 | 4.0 | 1384 | 0.4664 | 0.8376 | 0.7006 | 0.4177 | 0.4389 | | 0.4619 | 5.0 | 1730 | 0.4635 | 0.8365 | 0.6788 | 0.4147 | 0.4368 | | 0.4576 | 6.0 | 2076 | 0.4599 | 0.8365 | 0.6599 | 0.4270 | 0.4462 | | 0.4576 | 7.0 | 2422 | 0.4623 | 0.8357 | 0.6823 | 0.4133 | 0.4355 | | 0.4552 | 8.0 | 2768 | 0.4529 | 0.8398 | 0.6587 | 0.4438 | 0.4684 | | 0.4543 | 9.0 | 3114 | 0.4595 | 0.8342 | 0.6396 | 0.4083 | 0.4288 | | 0.4543 | 10.0 | 3460 | 0.4604 | 0.8346 | 0.6654 | 0.4374 | 0.4541 | | 0.4586 | 11.0 | 3806 | 0.4589 | 0.8353 | 0.6563 | 0.4105 | 0.4341 | | 0.449 | 12.0 | 4152 | 0.4536 | 0.8391 | 0.6540 | 0.4704 | 0.4947 | | 0.449 | 13.0 | 4498 | 0.4552 | 0.8353 | 0.6381 | 0.4202 | 0.4463 | | 0.4579 | 14.0 | 4844 | 0.4561 | 0.8353 | 0.6440 | 0.4113 | 0.4333 | | 0.4489 | 15.0 | 5190 | 0.4596 | 0.8338 | 0.6609 | 0.4020 | 0.4219 | | 0.459 | 16.0 | 5536 | 0.4667 | 0.8323 | 0.6563 | 0.3975 | 0.4143 | | 0.459 | 17.0 | 5882 | 0.4513 | 0.8379 | 0.6220 | 0.4343 | 0.4589 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0